京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言学习-基础篇
从2月10日开始自学R in action,将我的学习所得逐渐发布在这。
chapter1.新手上路
工作空间:存储着所有用户定义的对象(向量,矩阵,函数,数据框,列表);
当前的工目录保存是R用来读取文件和保存结果的默认目录。
getwd()显示当前工作目录;
setwd(“”)修改当前的工作目录;工作目录的"\"要换成“/”;历史记录保存在文件.Rhistory中,工作空间保存在文件.RData中。
install.packages("")下载某个包,library();载入某个包;
包使用方法的查询:help(package="package_name");
chapter2创建数据集
1.不同的行业对数据集行和列的叫法:
统计学家:观测和变量
2.R中的数据结构
标量,向量,矩阵,数组,数据框,列表
(1)向量------------------->数组 (区别:c中数组是从0开始计数的,R是从1开始)
a<-c(1,2,3,4)
a[3](和c类似呢)
a[(c(1,2,4))] #访问1,2,,4号元素
a[2:4]
(2)矩阵--------------------》二维数组
mymatrix<-matrix(1:20,nrow=5,ncol=4)
cells<-c(1,26,24,56)
rnames<-c("r1","r2")
cnames<-c("c1","c2")
mymatrix<-matrix(cells,nrow=2,ncol=2,byrow=true,dimnames=list(rnames,cnames)) byrow=true 按行填充 false 按列填充
矩阵下标使用
x[1,2]
x[1,]
x[,2]
x[1,c(1,2)]
(3)数组与矩阵类似,但是维度可以大于2
(4)数据框
mydata<-data.frame(col1,col2,col3)
选取数据框的元素
mydata[1:2]
mydata$coln $的作用类似与c中的.
(5)列表
一些对象的有序集合
2.数据的输入
1.从键盘输入
edit()函数会自动调用一个允许从键盘输入的文本编辑器
mydata<-dataframe(age=numeric(0),gender=charactor(0),weight=numeric(0))
mydata<-edit(mydata) edit实际上是在对象的一个副本上操作,需要赋值到一个目标上
2.从带分隔符的文本文件导入数据
>mydataframe<-read.table("myfile.csv",header=TRUE,sep=",",row.names="id")
> mydataframe
grade
1 23
2 23
3 12
4 32
5 12
> mydataframe<-read.table("myfile.csv",header=TRUE,sep=",")
> mydataframe
id grade
1 1 23
2 2 23
3 3 12
4 4 32
5 5 12
3.访问数据库管理系统
需要先安装ODBC驱动,注册数据源名称,用户名以及密码。
myconn<-odbcConnect("**",uid="**",pwd="**")
crimedat<-sqlFetch(myconn,Crime)
chapter3图形初阶
>opar<-(no.readonly=TRUE)---------------------------保存当前图形设置参数
> par(pin=c(2,3))---------------得到的图形大小为两英尺宽,三英尺高
> par(cex.axis=0.75,font.axis=3)-------------------坐标轴刻度设置为斜体,0.75倍
> par(lwd=2,cex=1.5)---------------线条为默认宽度2倍,符号1.5倍
> plot(dose,drugA,type="b",pch=19,lty=2,col="red")
> plot(dose,drugB,type="b",pch=19,lty=2,col="blue",bg="green")这两幅图都遵循par的设置
>par(opar)----------------------还原
可以使用title函数为图形添加标题和坐标轴标签
使用axis函数创建自定义坐标轴
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05