
R语言学习-基础篇
从2月10日开始自学R in action,将我的学习所得逐渐发布在这。
chapter1.新手上路
工作空间:存储着所有用户定义的对象(向量,矩阵,函数,数据框,列表);
当前的工目录保存是R用来读取文件和保存结果的默认目录。
getwd()显示当前工作目录;
setwd(“”)修改当前的工作目录;工作目录的"\"要换成“/”;历史记录保存在文件.Rhistory中,工作空间保存在文件.RData中。
install.packages("")下载某个包,library();载入某个包;
包使用方法的查询:help(package="package_name");
chapter2创建数据集
1.不同的行业对数据集行和列的叫法:
统计学家:观测和变量
2.R中的数据结构
标量,向量,矩阵,数组,数据框,列表
(1)向量------------------->数组 (区别:c中数组是从0开始计数的,R是从1开始)
a<-c(1,2,3,4)
a[3](和c类似呢)
a[(c(1,2,4))] #访问1,2,,4号元素
a[2:4]
(2)矩阵--------------------》二维数组
mymatrix<-matrix(1:20,nrow=5,ncol=4)
cells<-c(1,26,24,56)
rnames<-c("r1","r2")
cnames<-c("c1","c2")
mymatrix<-matrix(cells,nrow=2,ncol=2,byrow=true,dimnames=list(rnames,cnames)) byrow=true 按行填充 false 按列填充
矩阵下标使用
x[1,2]
x[1,]
x[,2]
x[1,c(1,2)]
(3)数组与矩阵类似,但是维度可以大于2
(4)数据框
mydata<-data.frame(col1,col2,col3)
选取数据框的元素
mydata[1:2]
mydata$coln $的作用类似与c中的.
(5)列表
一些对象的有序集合
2.数据的输入
1.从键盘输入
edit()函数会自动调用一个允许从键盘输入的文本编辑器
mydata<-dataframe(age=numeric(0),gender=charactor(0),weight=numeric(0))
mydata<-edit(mydata) edit实际上是在对象的一个副本上操作,需要赋值到一个目标上
2.从带分隔符的文本文件导入数据
>mydataframe<-read.table("myfile.csv",header=TRUE,sep=",",row.names="id")
> mydataframe
grade
1 23
2 23
3 12
4 32
5 12
> mydataframe<-read.table("myfile.csv",header=TRUE,sep=",")
> mydataframe
id grade
1 1 23
2 2 23
3 3 12
4 4 32
5 5 12
3.访问数据库管理系统
需要先安装ODBC驱动,注册数据源名称,用户名以及密码。
myconn<-odbcConnect("**",uid="**",pwd="**")
crimedat<-sqlFetch(myconn,Crime)
chapter3图形初阶
>opar<-(no.readonly=TRUE)---------------------------保存当前图形设置参数
> par(pin=c(2,3))---------------得到的图形大小为两英尺宽,三英尺高
> par(cex.axis=0.75,font.axis=3)-------------------坐标轴刻度设置为斜体,0.75倍
> par(lwd=2,cex=1.5)---------------线条为默认宽度2倍,符号1.5倍
> plot(dose,drugA,type="b",pch=19,lty=2,col="red")
> plot(dose,drugB,type="b",pch=19,lty=2,col="blue",bg="green")这两幅图都遵循par的设置
>par(opar)----------------------还原
可以使用title函数为图形添加标题和坐标轴标签
使用axis函数创建自定义坐标轴
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05