R贱客之apply族
为什么贱客呢?主要是因为apply函数家族的几个函数经常容易搞混,有时候不知道该用哪个函数才合适呢?现在我就给咱们把apply函数家族细细说来,让这个贱客变成真正的剑客!
apply函数
apply(X, MARGIN, FUN, ...)
#FUN函数运用到x的第MARGIN维度上。MARGIN:1表示矩阵行,2表示矩阵列,c(1,2) 表示矩阵行和列。
操作对象:矩阵或数据框
a<-matrix(1:12,nrow=3)
a
#求每列的平均值
apply(a,2,mean)
结果为: 2 5 8 11
注意:
我们也可以使用colMeans(),rowMeans( ),对矩阵的列和行分别求平均值,rowSums( ),colSums(),,对矩阵的列和行分别求和。如果数据中NA,那么在求行列的平均值或和的时候,NA所在的行列的计算结果也没NA。数据分析培训
lapply()函数
lapply(X, FUN, ...)
#把函数FUN运用到列表的每一个元素
操作 对象: 列表,数据框(不能用于矩阵或数组)
tapply函数
tapply(X, INDEX, FUN=NULL, …, simplify = TRUE)
#FUN函数根据INDEX索引应用到x数据上
操作 对象: 向量(或者具有相同索引的数据集)
sapply()函数
sapply(X, FUN, …, simplify = TRUE, USE.NAMES = TRUE)
#该函数比lapply函数更友好一些,可以使用simplify参数来调节输出的数据格式。
操作 对象:向量
vapply函数
vapply(X, FUN, FUN.VALUE, …, USE.NAMES = TRUE)
#类似sapply函数,但返回值只能按照预先指定的方式输出。
操作对象:向量或者表达式对象,其余对象将被通过as.list强制转换为list。
mapply()函数
mapply(FUN, …, MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
#用于多变量情况。
其中MoreArgs参数:FUN函数的其他参数列表。 SIMPLIFY参数 :逻辑或者字符串,可以减少结果成为一个向量、矩阵或者更高维阵列,详见sapply的simplify参数。 USE.NAMES参数 :逻辑值,如果第一个参数…已被命名,将使用这个字符向量作为名字。
eapply函数
eapply(env, FUN, ...,all.names = FALSE, USE.NAMES = TRUE)
#env表示将要使用进行FUN计算后返回一个列表值,用户可以请求所有使用过的命名对象。
env参数:将被使用的环境。
all.names参数:逻辑值,指示是否对所有值使用该函数。
USE.NAMES参数:逻辑值,指示返回的列表结果是否包含命名。
rapply()函数
rapply(object, f, classes ="ANY", deflt = NULL,how = c("unlist", "replace", "list"),...)
#运用函数递归产生列表, classes参数 :关于类名的字符向量,或者为any时则匹配任何类。 deflt参数 :默认结果,如果使用了how = “replace”,则不能使用。 how参数 :字符串匹配三种可能结果。
这里只是大概说一下,详细解释别忘了R里面的help()函数。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22