R语言中的几类高效函数
在执行R语言任务时,一个提高执行效率的思路就是尽量避免使用循环语句,否则你的工作将变的缓慢低效。事实上,我们是可以有办法使用一些较高级的函数来尽量避免使用循环工作的。下面本文将介绍常见的几种高效函数。
目录
1.apply函数
2.lapply函数
3.sapply函数
4.tapply函数
5.sweep函数
6.column函数和row函数
1)apply函数
apply函数主要应用在一个数组或者矩阵上,通过给定的函数,并根据指定的计算方向(按行或按列),以该方向的数组为输入对象,反回计算结果,并将结果存储于一个数组或向量中。
apply(array, margin, function, ...)
首先定义一个矩阵data
data <- matrix(rep(seq(4), 4), ncol = 4)
data
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
[4,] 4 4 4 4
#先根据行求和,其中1为指定按行计算(1为行,2为列),sum为指定的function
apply(data, 1, sum)
[1] 4 8 12 16
#根据列求和,其中2为按列计算
apply(data, 2, sum)
[1] 10 10 10 10
#使用自定义函数,首先定义函数myfun
myfun <- function(x){
+ sum(x) + 2
+ }
#根据自定义函数,使用apply函数计算
apply(data, 1, myfun)
[1] 6 10 14 18
#自定义函数还可以写在apply函数内部,不过需要注意,没有大括号
apply(data, 1, function(x) sum(x) + 2)
[1] 6 10 14 18
#更通用的,可以将函数写出如下形势
apply(data, 1, function(x, y) sum(x) + y, y=2)
[1] 6 10 14 18
2)lapply函数
lapply用于对给定的数据,分别对其中的元素按指定的函数计算,并返回一个list。对于数据框来说,lapply函数显得极为友好,在data.frame中,每个变量可以看做是一个元素,因此lapply应用于data.frame时,可以同时对所有变量按指定函数进行计算。
#首先构造一个数据框
data.df<-data.frame(data)
> data.df
X1 X2 X3 X4
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
#对数据框所有变量进行求和,返回每个变量的结果,存储形式为list。
lapply(data.df, sum)
$X1
[1] 10
$X2
[1] 10
$X3
[1] 10
$X4
[1] 10
#此外,还可以将传入的函数改成自定义的函数。要注意,函数形式没有大括号。
y1 <- lapply(data.df, function(x, y) sum(x) + y, y = 5)
y1
$X1
[1] 15
$X2
[1] 15
$X3
[1] 15
$X4
[1] 15
#使用lappy代替循环函数
unlist(lapply(1:5, function(i) print(i) ))
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 1 2 3 4 5
#对比一下for循环结果就算结果,发现是一致的
for(i in 1:5) print(i)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
3)sapply函数
sapply函数与lapply函数类似,主要输入的参数都是数据和函数,但sapply与lapply不同的是sapply返回的是向量,而lapply返回的是一个list。并且sapply还存在第三个参数simplify,当silmplify为FALSE时,那么sapply返回的结果和lapply一致;当silmplify为TRUE时,sapply返回的结果为一个向量或者矩阵;此外还可以设定其它格式。
sapply(list, function, ..., simplify)
y <- sapply(data.df, function(x, y) sum(x) + y, y = 5)
y
X1 X2 X3 X4
15 15 15 15
is.vector(y)
[1] TRUE #返回的结果是一个向量
#定义simply=F,此时返回的结果胃list,效果和apply一样。
y <- sapply(data.df, function(x, y) sum(x) + y, y = 5,simplify = F)
y
$X1
[1] 15
$X2
[1] 15
$X3
[1] 15
$X4
[1] 15
class(y)
[1] "list"
is.list(y)
[1] TRUE#返回结果为list
4)tapply函数
tapply用于对数据进行分组计算,类似于SQL中的group by。tapply需要传入三个参数,第一个是数据,第二个是数据的分组,第三个参数是指定的计算函数。
data.df<-data.frame(x=runif(10),group1=rep(1:5,2),group2=rep(1:2,5))
data.df
x group1 group2
1 0.68180046 1 1
2 0.72726914 2 2
3 0.33735976 3 1
4 0.48212394 4 2
5 0.04234556 5 1
6 0.88701919 1 2
7 0.53946995 2 1
8 0.01295496 3 2
9 0.47062069 4 1
10 0.87079649 5 2
tapply(data.df$x, data.df$group1, mean)
1 2 3 4 5
0.4926077 0.7726152 0.6058755 0.6110971 0.3074988
#此处还可以传入两个分组的计算结果
tapply(data.df$x, list(data.df$group1,data.df$group2), mean)
1 2
1 0.68180046 0.88701919
2 0.53946995 0.72726914
3 0.33735976 0.01295496
4 0.47062069 0.48212394
5 0.04234556 0.87079649
5)sweep函数
sweep函数用于对给定的输入数据做批量的计算,主要参数有数据、统计方向、计算参数、计算函数。其中统计方向可取1或2,取1表示在行的方向上计算,2表示在列的方向上计算。计算函数为加减乘除等算是,默认为减法'-'。
data<-matrix(runif(20),5)
data.df<-data.frame(data)
data.df
X1 X2 X3 X4
1 0.09248257 0.4358975 0.1884430 0.1212183
2 0.83091974 0.2388490 0.8377123 0.6140257
3 0.15849016 0.2286257 0.8577217 0.9877683
4 0.86437393 0.2771434 0.5302898 0.1608113
5 0.43098913 0.5906199 0.1117341 0.2846628
#将数据按行计算,每行分别减去各行的最大值
sweep(data.df,1,apply(data.df,1,max),'-')
X1 X2 X3 X4
1 -0.343414887 0.0000000 -0.2474544 -0.3146792
2 -0.006792557 -0.5988633 0.0000000 -0.2236865
3 -0.829278179 -0.7591426 -0.1300467 0.0000000
4 0.000000000 -0.5872305 -0.3340842 -0.7035627
5 -0.159630747 0.0000000 -0.4788858 -0.3059571
6)column函数和row函数
还有一些函数也是基于行和列进行统计计算的,如对列进行计算的有colMeans和colSums;对行计算的rowMeans和rowSums。
data.df
X1 X2 X3 X4
1 0.09248257 0.4358975 0.1884430 0.1212183
2 0.83091974 0.2388490 0.8377123 0.6140257
3 0.15849016 0.2286257 0.8577217 0.9877683
4 0.86437393 0.2771434 0.5302898 0.1608113
5 0.43098913 0.5906199 0.1117341 0.2846628
#对列求平均
colMeans(data.df)
X1 X2 X3 X4
0.4754511 0.3542271 0.5051802 0.4336973
#对列求和
X1 X2 X3 X4
2.377256 1.771135 2.525901 2.168486
#对行求和
rowSums(data.df)
[1] 0.8380414 2.5215068 2.2326058 1.8326183 1.4180059
#对行求平均
rowMeans(data.df)
[1] 0.2095103 0.6303767 0.5581515 0.4581546 0.3545015
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22