昨天和学长聊到下周要做的数据清洗工作,心想应该很好上手吧,结果今早爬起来一问度娘,立马就被灌了整锅的毒鸡汤…某论坛上的网友甚至告诉小编,数据清洗占了他某项工作中的八成分量,是绝对的大工程…
额…好吧,尽管小编还是这方面的零基础学员,鼓捣了一整天依然图样图森破,但是在“还要多学习”的精神指引下,还是来跟大家分享一点学习中的收获吧。
前方预警:大神请绕行~
在开始今天的介绍之前,有几点说明:
1. 这次介绍的代码主要针对重复值、缺失值和字符中的空格等情况的处理;
2. 由于篇幅限制,演示中导入csv格式文件作为数据来源;
3. 请在“文件”菜单中把R软件的“当前工作目录”改为导入文件所在目录;
4. 本次使用的数据是世界银行数据库中的“国家政策和制度评估(CPIA):公共部门管理和机构集群平均值(1=低至 6=高)”数据;另外,为使清洗效果更明显,我对其做了点“手脚”,让其显得“更乱”:
那么,这么“脏乱”的数据该咋“洗”呢?具体步骤如下:
1. 读取并创建数据表。可以通过查看数据表前5行看看是否读取;
#读取并创建数据表
data=data.frame(read.csv('CPIA.csv',header =1))
#查看数据表前5行
head(data)
2. 清洗特定列的重复值。R语言的返回结果为:重复的标记为TURE,不重复的值标记为FALSE;下面以清洗“国家名称”这一列的重复值为例,其他各列依次完成;
#重复值清洗
duplicated(data$Country.Name)
#删除重复值,返回唯一值列表
data=unique(data)
#查看清洗结果
duplicated(data$Country.Name)
3. 空值清洗。
(1)如果查找数据表中的空值,则代码为:
#查找数据表中的空值
head(is.na(data),n = 264)
需要注意的是,这里的264是数据容量,R语言的返回结果依然是空值标记为TURE,非空值标记为FALSE;
(2)如果查找特定列中的空值,则代码如下(以2015年数据为例):
#查看特定列中的空值
is.na(data$X2015)
(3)处理空值的方式有两种,将空值填充为0或删除空值所在行;
#将空值填充为0
data[is.na(data)] <- 0
#删除空值所在行
data<-na.omit(data)
4. 去除特定列中字符间的空格。需要安装并加载raster包,以“国家名称”列为例;
#提取“国家名称”列
Country.Name=as.vector(data$Country.Name)
#安装raster包
install.packages('raster')
#加载raster包
library(raster)
#去除“国家名称”字段中的空格
Country=trim(Country.Name)
#覆盖原有“国家名称”字段
data$Country.Name=Country
5. 另存为新文件,供后续分析;
#保存为csv文件
write.csv(data,file="CPIA1.csv")
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22