简单的认识一下组合分类器以及R语言对应使用函数
首先,我们大家都有学习过一系列的分类方法,例如决策树,贝叶斯分类器等,有时候分类的效果不太如人意,哪怕是参数是最优化也一样,所以这时候就需要一些提高分类准确性的方法,我们常用的就是组合分类器,它就是一个复合模型,也就是由多个分类器组合而成;个体的分类器对结果进行投票,然后对组合分类器返回的投票进行汇总,然后基于返回的结果进行预测和分类。组合分类器的结果往往比它的成员分类器更准确;一般常用的组合分类方法有bigbing,boosting,还有我比较喜欢的随机森林; 什么是组合分类?
组合分类就是把K个学习得到的模型M1,M2,...,MK组合在一起,使用给定数据集D创建K个训练集D1,D2,...,DK,其中D1用于创建M1模型,以此类推;给定一个待分类的新数据元组,每个基分类器通过返回类预测投票,它收集由基于基分类器返回的类标预测,并输出占多数的类,基分类器也会出错,当基分类器出错时不代表组合分类器出错,组合分类器基于基本分类器的投票返回类预测,因此基分类器要出错超过一半时组合分类器才会出错,并且基分类器之间是不相关的,这也就是说明组合分类器更加准确。
bagging
这个方法也叫装袋法,这个也是组合分类器的一种,它的理念在与通过自举的方法建立很多不同的模型,然后对结果取平均,其本质是使得一些较弱的模型形成一个群体对结果来投票,从而得到更精确的预测;例如,如果你是一名病人希望根据你的症状做出诊断,你可能选择多个医生,而不是一个,如果某个诊断结果比其他诊断结果出现的次数多,你可能认为这个结果是最为可能出现的诊断结果,也即是说最终的诊断结果是根据多数表决做出的;其中每个医生的权重都一样,更多的医生表决比少数医生的多数表决更为的可靠;
在给定D个元组的集合,采用有放回抽样,每个训练集都是一个自助样本,每个训练集通过学习得到一个分类模型,对未知的元组进行分类,每个分类器M返回它的分类结果,算做一票,最后得票最高的作为结果类;对连续变量则通过取平均值;
那么在R语言里面怎么使用这个方法呢?
这时候我先要装好包ipred包中的bagging函数建立回归的bagging模型;
例如
bagging(price~x1+x2,data=test_date,nbagg=20)#这里只是举例代码并不能执行;
nbagg时选择多少个rpart数
boosting
这个方法也叫提升,它和上面的方法有些类似,假如你是一位病人,你选择咨询多位医生,然而得到的结果不是一致的,这时候你就需要根据先前医生诊断的准确率。对每一位医生赋予一个权重,然后根据加权诊断的组合作为最终的结果;这就是提升的基本思想;
早提升方法中,首先权重赋予每个训练元组,迭代的学习K个分类器;学习得到分类器M1之后,更新权重,使得其后的分类器M2更关注误分类的训练元组,如元组不准确的分类,则它的权重增加,如果元组正确分类,则它的权重减少;这是希望我们能够更加关注上一轮误分类的元组;其中每个分类器投票的权重是其准确率的函数;
bagging和boosting相比
由于boosting更加的关注误分的元组,所以存在结果符合模型的过度拟合的危险,bagging则不太受这个影响,不过二者都能够显著的提高准确度;boosting往往能够得到较高的准确率;
R语言里使用的是包mboost中的blackboost函数从回归树种建立boosting模型,glmboost从广义线性模型中建立模型;
blackboost(price~x1+x2,data=test_date)#这里只是举例代码并不能执行;
随机森林也是一种组合分类器,因为每一个分类器都是一棵树,所以组合在一起就很像一个森林;每一个数都依赖独立抽样;
随机森林可以使用bagging和随机属性来选择组合来构建,
A、指定M值,即随机产生M个属性用于节点上的二叉树,二叉树属性选择任然满足不纯度最小原则,不纯度公式为
B、应用BOOTSTRAP自助法在员数据集中有放回地随机抽取K个样本集,组成K颗决策树,而对于未被抽取的样本用于决策树的预测;
C、根据K个决策树组成的随机森林对待分类样本进行分类或者预测,分类的原则是投票法,预测的原则是简单平均。
想象组合分类器中每个分类器都是一颗决策树,因此分类器的集合就是一个“森林”,使用CART算法的方法来增长树,树增长到最大的规模,并且不剪枝,用这种方式形成的随机森林称为Forest-RI,数据分析师培训
另一种形式称为Forest-RC,他不是随机地选择一个属性子集,而是选择一个属性子集,而是由已有的属性的线性组合创建一些新属性,就是由原来的S个属性组合,在给定的节点,随机选择S个属性,并且以次欧诺个[-1,1]中随机选取的数为系数相加,产生S个线性组合,并在其中找到最佳的划分,仅仅只有少量属性可用时,为了降低个体分类器之间的相关性,这种形式的随机森林才有用。
随机森林的准确率可以boosting媲美,随机森林的泛化误差收敛,所以不存在过度拟合不是什么问题;
R语言最后给我们常用randomForest包中的randomForest函数去建模;
randomForest (price~x1+x2,data=test_date)#这里只是举例代码并不能执行;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13