京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:探索性分析;强大的综合性描述性统计模块
SPSS还提供了一种综合性的数据描述工具:探索性分析,它能够一次性将上述分析结果和其它更详细的分析结果呈现出来,不能能够输出数据结果,还能提供各种直观统计图。
探索性分析
生活中,高空作业一般都会借助外物如吊车等工具帮住自己达到目标,而统计学中也一样,在对数据的基本特征有所了解,需要对数据进行更为细致和深入的描述性观察分析,这时候就需要绘制统计图来辅助分析,这样就使得数据分析更为深入、细致和全面。
探索性分析项目
描述性统计结果。输出各种描述性统计指标,例如,均值、方差、标准差等。
正态分布检验。通过对数据的进一步探索分析,验证其是否符合正态分布,进而确定能否使用正态分布数据的分析方法进行分析。常用的正态分布验证是Q-Q概率图。
方差齐性检验。通过Levene检验比较各组数据之间的方差是否相等,以此判断数据的离散程度是否存在差异。若Levene检验得到的显著性水平小于0.05,就拒绝方差相同的假设。
寻找数据中的奇异值。在数据整理输入过程中,对出现某些影响分析结果的奇异值进行删除或保留。
探究性分析结果的图形描述
探究性分析增加了图形的方式对数据的分布给予直观呈现。图形包括茎叶图、直方图、箱图和Q-Q概率图。茎叶图:是用以描述连续变量的一种手法,主要包括频率、茎和叶三个部分。其中,茎和叶分布代表数据的整数部分和小数部分。茎代表观测值的十位数,叶对应观测值的个位数。一个个位数代表一个观测值,每一行左边的频率就是该行对应的个案数。每个茎叶图的底部还注明了茎宽和每叶代表的个案数。数据的值即为茎叶组成的数值结合乘以茎宽。茎叶图既保留了数据的频率分布,也保存了原始数据,是探究性分析常用方法之一。
直方图:用于对连续变量数据的观察。它是以区间作为水平轴,以各个区间的频率作为相应条块的高度来绘制出统计图。从直方图上可以直观看出数据的分布状况等。
箱图:是表现五数(最小值、最大值、中位数、第一个四分位数、第三个四分位数)的图形形式,其中矩形为箱图的主题,两个四分位数之差为箱长,也称内四分位限。箱体部分包含全体数据约50%的数值,箱体的上中下三条平行线分别表示75%、50%(中位数)和25%分位数。纵贯箱体中间的竖线称为触须线,触须线上下两端的横线代表该组变量数值的最大值(97.5%)和最小值(2.5%)。箱图在比较两个或多个变量时尤其有用,它还可用于判别极端值的存在。如果箱图中有异常值,用【。】表示,如果有极端异常值,则用【*】表示。
案例分析
现有某校451名学生的体检数据,测量了身高、体重、肺活量、血压、心率等指标。对所有学生的身高数据进行探索性分析,进一步了解该校学生的身高情况。
分析步骤
1、选择菜单【分析】-【描述统计】-【探索】。将变量身高选入因变量列表;将性别选入因子列表;将编号变量选入标注个案。
因变量指待分析的数据变量;
因子列表指分类变量,即按照因子变量对因变量进行分类;
标注个案指对异常值的标注信息;
本案例将身高变量选为因变量,即待分析数据变量;将年龄变量选为因子变量,即按照年龄对身高数据进行分类;标注个案选择编号变量,在统计图上,异常值将标注其编号。
2、统计指标及统计图选择。
为了展示探索性分析的所有功能,我们将所有的统计指标及统计图类型都进行勾选。其它的选项比较简单,这里需要对伸展与级别Levene检验进行说明。
3、点击【继续】,然后点击【确定】,输出结果。
结果解读
1、个案处理摘要;从下表可以知道每个年龄的有效个案数、缺失个案数和总计个案数。
2、描述统计摘要表;由于年龄跨度较大,所以在这里只展示10岁的学生数据。包括了所有的描述性统计指标。
3、M-估计值;
当数据中存在极端值和奇异值时,M估计值是更好的平均值和中位数的替代者,能够更好的反映数据的集中程度。M估计采取的办法是给每个个案数值增加权重,这样能够有效的减少极端值和异常值对平均值和中位数的影响,从而让分析者更好的了解手中的数据。表中有四个M估计值,它们的区别在于权重不同。如果描述统计中,平均值和中位数与M估计表的有很大出入,说明原始数据中存在极端值。
4、百分位数;表中显示每个年龄数据的不同百分位的身高。
5、正态分布检验结果;探索性分析采用了两种正态分布检验方法:K-S检验和S-W检验。
结果展示了每个年龄学生的身高是否服从正态分布。
6、各种统计图形,这里以10岁学生群体的统计图为例。输出结果中包括了直方图、茎叶图、Q-Q图、去势Q-Q图以及箱图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23