
SPSS应用重复测量数据的统计方法
重复测量设计,即对一组或多组受试对象,在k个(k≥2)不同的时间点上,从每个人体(或样本)上重复观测同一个指标的具体取值的设计。如临床研究中,需要观察患者在不同时间的某些生理、生化或病理指标的变化趋势,或治疗干预后不同时间或疗程的疗效特点,就要进行重复测量设计。重复测量数据间存在相关性,不符合方差分析要求,所以重复测量数据资料需要采用专门的统计分析方法,该方法也是近代统计学研究的热点之一。
对于重复测量数据(临床上常称纵向监测数据),实质上每个受试对象的观察结果是多次重复测量结果的连线,统计分析的目的是比较这些连线变化趋势的特征。重复测量试验数据的方差分析需要考虑两个因素,一是处理分组,二是测量时间。可采用的统计分析方法:1. 多元方差分析方法;2. 重复测量数据的方差分析。
重复测量数据的变异由两大部分组成。一是观察对象间差异,二是重复测量间差异。观察对象间差异包括处理组间差异和观察对象个体间变异两部分;重复测量间差异包括测量时间之间差异、处理与测量时间的交互作用和组内误差三个部分。因此,重复测量数据的总变异可分解为处理组、测量时间、处理组与测量时间的交互作用、观察对象间随机误差以及重复测量误差等五个部分。
重复测量资料统计前提条件是首先要求样本是随机的,除了满足一般方差分析条件外,特别强调满足协方差阵球形性——球形检验。球形检验(Mauchly):如果P值大于α (如果α=0.05,即p>0.05),说明协方差阵的球对称性质得到满足。若球对称性得不到满足,方差分析的F值是有偏的,会增大Ⅰ类错误的概率,则需校正。否则,必须对与时间有关的F统计量的分子和分母自由度进行调整,减少Ⅰ类错误的概率。调整系数为:ε(epsilon)。
SPSS操作示例
SPSS: Analyze » General Linear Model » Repeated Measures
选择重复测量方法
指定对应的测量值
选择Post Hoc
选择Model
选择Option
五次重复测量量的变量名
分组变量情况
各组各个时间点的详细数据描述
结果解读与展示
注:各个时间点存在性差异,而且与组别交互中,也存在显著性差异。
球形检验结果
注:不同时间点存在显著性差异,不同组别对各个时间点的结果存在影响。
各重复测量间变化趋势的分析
注:不满足线形和二次方趋势;勉强拟合三次或四次曲线,但仅5次测量,要慎重采用。
组间效应的方法分析结果
注:组间比较无显著性差异。
两两比较结果
五次测量的均数图
结果
结论:该治疗方法对三组糖尿病患者的糖化血红蛋白的降低无明显差异。
重复测量数据采用一般线性模型(GLM)方法进行测量,这是使用极为广泛的方法。不仅能做多个因素,多个水平的统计,还能控制协变量,从而得出更可靠的结果。甚至临床上多组之间比较,也更倾向采用GLM,而不是ANOVA方法。
虽然GLM的统计理论很复杂,但是作为临床医生更重要的是识别统计方法,合理应用,以及合理解读结果即可,不必吃透复杂的统计原理。重复测量数据采用一般线性模型(GLM)方法,今后运用会越来越广泛,值得大家重视。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10