
是否可以这样说,它们是利用不同方法解决相似问题的四个领域?它们之间到底有什么共同点和不同点?如果它们之间有层次等级的区分,应该是怎样一回事?
我假定题主是想得到一个清晰的图,上面有各个领域清晰的分界线。因此,在这里我尝试用我最简单的方式来解释这个问题。
机器学习是一门涉及自学习算法发展的科学。这类算法本质上是通用的,可以应用到众多相关问题的领域。
数据挖掘是一类实用的应用算法(大多是机器学习算法),利用各个领域产出的数据来解决各个领域相关的问题。
统计学是一门研究怎样收集,组织,分析和解释数据中的数字化信息的科学。统计学可以分为两大类:描述统计学和推断统计学。描述统计学涉及组织,累加和描绘数据中的信息。推断统计学涉及使用抽样数据来推断总体。
机器学习利用统计学(大多是推断统计学)来开发自学习算法。
数据挖掘则是在从算法得到的结果上应用统计学(大多是描述统计学),来解决问题。
数据挖掘作为一门学科兴起,旨在各种各样的行业中(尤其是商业)求解问题,求解过程需要用到不同研究领域的不同技术和实践。
1960年求解问题的从业者使用术语Data fishing来称呼他们所做的工作。1989年Gregory Piatetsky Shapiro使用术语knowledge Discovery in the Database(KDD,数据集上的知识发掘)。1990年一家公司在商标上使用术语数据挖掘来描述他们的工作。现如今现如今数据挖掘和KDD两词可以交换使用。
人工智能这门科学的目的在于开发一个模拟人类能在某种环境下做出反应和行为的系统或软件。由于这个领域极其广泛,人工智能将其目标定义为多个子目标。然后每个子目标就都发展成了一个独立的研究分支。
这里是一张人工智能所要完成的主要目标列表(亦称为AI问题)
1、Reasoning(推理)
2、Knowledge representation(知识表示)
3、Automated planning and scheduling(自动规划)
4、Machine learning(机器学习)
5、Natural language processing(自然语言处理)
6、Computer vision(计算机视觉)
7、Robotics(机器人学)
8、General intelligence or strong AI(通用智能或强人工智能)
正如列表中提到的,机器学习这一研究领域是由AI的一个子目标发展而来,用来帮助机器和软件进行自我学习来解决遇到的问题。
自然语言处理是另一个由AI的一个子目标发展而来的研究领域,用来帮助机器与真人进行沟通交流。
计算机视觉是由AI的目标而兴起的一个领域,用来辨认和识别机器所能看到的物体。
机器人学也是脱胎于AI的目标,用来给一个机器赋予实际的形态以完成实际的动作。
它们之间有层次等级的区分吗,应该是怎样一回事?
解释这些科学和研究层次关系的一个方法是分析其历史。
科学和研究的起源
统计学——1749年
人工智能——1940年
机器学习——1946年
数据挖掘——1980年
统计学的历史公认起源于1749年左右,用来表征信息。研究人员使用统计学来表征国家的经济水平以及表征用于军事用途的物质资源。随后统计学的用途扩充到数据的分析及其组织。
人工智能的历史碰巧存在两种类型:经典的和现代的。经典人工智能可在古时的故事和著作中看得到。然而,1940年当人们在描述用机器模仿人类的思想时才出现了现代人工智能。
1946年,作为AI的分支,机器学习的起源出现了,它的目标在于使机器不通过编程和明确的硬接线进行自我学习来对目标求解。
是否可以这样说,它们是利用不同方法解决相似问题的四个领域?
可以这么来说(统计学,人工智能和机器学习)是高度相互依赖的领域,没有其他领域的引领和帮助,他们不能够单独存在。很高兴能看到这三个领域是一个全局领域而非三个有所隔阂的领域。
正如这三个领域是一个全局领域,它们在解决共同目标时发挥了自己的优势。因此,该方案适用于许多不同领域中,因为隐含的核心问题是一致的。
接下来是该数据挖掘出场了,它从全局获取解决方案并应用到不同的领域(商业、军事、医学、太空)来解决同一隐含本质的问题。这也是数据挖掘扩大其受欢迎程度的时期。
我希望我的解释已经回答了答主所提问一切疑问,我相信这能清晰地帮助任何一个想要理解这四个领域关键点的人们。如果你对该话题有任何想要说的或者要分享的,请在评论里写下你的想法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07