如何在SPSS中做数据正态转化
数据不完全符合正态分布,接下来的问题是,很多学科都在讲大样本不用太考虑正态分布问题,但事实上由此造成的误差确实存在,有时还会比较大。那么如何用SPSS做数据正态化转换呢?
严格说来,解决这个问题需要讲四个方面:
什么是正态转换?
为什么做正态转换?
何时做正态转化?
如何做正态转化?
我担心如果只讲How(如何做),也许有些初学者不分场合,误用滥用。但是,我同样担心如果从ABC讲起,难免过分啰嗦,甚至有藐视大家的智商之嫌。所幸现在是互联网时代,有关上述What, Why, When问题的答案网上唾手可得。如果对这些问题不甚了了的读者,强烈建议先到google上用“How to transform data to normal distribution"搜一下(或点击下面的“前10条”),前10条几乎每篇都是必读的经典。
有了上述交代,我们可以比较放心地来讨论如何做正态转换的问题了。具体来说,涉及以下几步:
第一步
查看原始变量的分布形状及其描述参数(Skewness和Kurtosis)。这可以用频率或者描述性统计或者BoxPlot;
第二步
根据变量的分布形状,决定是否做转换。这里,主要是看一下两个问题:
1、左右是否对称
也就是看Skewness(偏差度)的取值。如果Skewness为0,则是完全对称(但罕见);如果Skewness为正值,则说明该变量的分布为positively skewed(正偏态,见下图1b);如果Skewness为负值,则说明该变量的分布为negatively skewed(负偏态,见图 1a)。然而,肉眼直观检查,往往无法判断偏态的分布是否与对称的正态分布有“显著”差别,所以需要做显著性检验。如同其它统计显著性检验一样,Skewness的绝对值如大于其标准误差的1.96倍,就被认为是与正态分布有显著差别。如果检验结果显著,我们也许(注意这里我用的是“也许”一词)可以通过转换来达到或接近对称。见注解1的说明。
2、峰态是否陡缓适度
也就是看Kurtosis(峰态)是否过分peaked(陡峭)或过分flat(平坦)。如果Kurtosis为0,则说明该变量分布的峰态正合适,不胖也不瘦(但罕见);如果Kurtosis为正值,则说明该变量的分布峰态太陡峭(瘦高个,见图2b);反之,如果Kurtosis为负值,该变量的分布峰态太平缓(矮胖子,见图2a)。峰态是否适度,更难直观看出,也需要通过显著检验。如同Skewness一样,Kurtosis的绝对值如果大于其标准误差的1.96倍,就被认为与正态分布有显著差别。这时,我们也许可以通过转换来达到或接近正态分布(峰态)。
第三步
如果需要做正态化转换,还是根据变量的分布形状,确定相应的转换公式。最常见的情况是正偏态加上陡峰态。
1、如果是中度偏态
如Skewness为其标准误差的2-3倍,可以考虑取根号值来转换,以下是SPSS的指令(其中"nx"是原始变量x的转换值,参见注2):
COMPUTE nx=SQRT(x)
2、如果高度偏态
如Skewness为其标准误差的3倍以上,则可以取对数,其中又可分为自然对数和以10为基数的对数。以下是转换自然对数的指令(注2):
COMPUTE nx=LN(x)
以下是转换成以10为基数的对数(其纠偏力度最强,有时会矫枉过正,将正偏态转换成负偏态,注2):
COMPUTE nx=LG10(x)
上述公式只能减轻或消除变量的正偏态(positive skewed),但如果不分青红皂白(即不仔细操作第一和第二步)地用于负偏态(negative skewed)的变量,则会使负偏态变得更加严重。如果第一步显示了负偏态的分布,则需要先对原始变量做reflection(反向转换),即将所有的值反过来,如将最大值变成最小值、最小值变成最大值、等等。如果一个变量的取值不多,可用如下指令来反转:
RECODE x(1=7)(2=6)(3=5)(5=3)(6=2)(7=1)
如果变量的取值很多或有小数、分数,上述方法几乎不可能,则需要写如下的指令(不知大家现在是否信服了为什么要学syntax吗?):
COMPUTE nx=max-x+1, 其中max是x的最大值。
第四步
回到第一步,再次检验转换后变量的分布形状。如果没有解决问题,或者甚至恶化(如上述的从正偏态转成负偏态),需要再从第二或第三步重新做起,然后再回到第一步的检验,等等,直至达到比较令人满意的结果(见注3)。
数据正态化的特别注解
1、如同其它统计检验量一样,Skewness和Kurtosis的的标准误差也与样本量直接有关。具体说来,Skewness的标准误差约等于6除以n后的开方(根号喜下6/n),而Kurtosis的标准误差约等于24除以n后的开方(根号下24/n),其中n均为样本量。由此可见,样本量越大,标准误差越小,因此同样大小的Skewness和Kurtosis在大样本中越可能与正态分布有显著差别。这也许就是SW在问题中提到的“很多学科都在讲大样本不用太考虑正态分布问题”的由来。我的看法是,如果小样本的Skewness和Kurtosis是显著的话,一定要转换;在大样本的条件下,如果Skewness和Kurtosis是轻度偏差,也许不需要转换,但如果严重偏差,也是要转换。
2、大家知道,根号里的x不能为负数,对数或倒数里的x不能为非正数(即等于或小于0)。如果你的x中有是负数或非正数,需要将其做线性转换成非负数(即等于或大于0)或正数(大于0),如 COMPUTE nx = SQRT (x - min) 或 COMPUTE nx = LN (x - min + 1),其中的min是x的最小值(为一个非正数)。
3、不是任何分布形态的变量都可以转换的。例外之一是“双峰”或“多峰”分布(distribution with dual or multiple modality),没有任何公式可以将之转换成单峰的正态分布。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29