数据分析助力促销的秘籍
浙江温州,浙江温州,江南皮革厂,江南皮革厂,倒闭啦!倒闭啦!好了,不用再说大家脑子里也自动带入了王八蛋老板黄鹤带着小姨子跑路的旋律。
然而事实上,即使没有吃喝嫖赌欠下3.5个亿,这么做促销,黄老板也是要带着小姨子跑路的。
因为假设宣传说的是真的,原价200-300的产品一律20元的话(90%的discount),估计只能收回企业老板的利润,以下几样一样都挣不回来:
渠道成本(一般占标价40%-60%)
生产成本(一般占标价10%-20%)
营销成本(一般占标价10%-20%)
经营成本(一般占标价10%-20%)
经销商,上下游和自己员工都欠着钱,黄老板岂有不带着小姨子跑路之理?
这个荒诞的故事,揭示了一个简单的道理:
所有的促销活动,本质上都是透支利润换销量。
想要让老板不欠工钱,小姨子不跑掉,就得有效控制促销投入,提升活动效果。实际上,促销,特别是打折促销,还在透支品牌。持续性的打折促销就像吸毒,短期见效果,越吸越上瘾,但长期吸就把品牌吸废掉了。特别是传统企业,不像互联网企业还能靠圈钱续命,每一笔促销都是在消耗自己的血汗钱。
因此,如果通过数据分析,提升促销活动ROI,就是在帮企业省钱,增效!
既然促销活动是以数量换质量,那么优化的基本思路就是:
选人:区分出不需要促销也会购买的顾客,减少投入
促单:折扣力度要能打动不想买的人购货,增加效果
在移动互联网还没那么发达的年代,企业很难一对一的与客户沟通,因此难以有差别的投放促销活动,而在今天短信,二维码,APP,服务号,都可以帮我们做到这一点。执行上的难度在下降,考验分析功力的时候到了。
如何选人?业务部门常见的战术思路是:
1. 从用户生命周期的角度出发:价格折扣投放到新顾客与沉默的老顾客身上;成长中的顾客一般做增量促销或交叉销售。
2. 从用户价值的角度出发:高价值顾客不做价格折扣,而是把资源投在提供更多增值服务上;低价值的,尚未挖掘过的顾客做价格折扣,培育用户习惯。
3. 从用户活跃行为的角度出发:在活跃高峰期不做价格折扣,做增量或者交叉;在活跃低谷做一定价格折扣,分流用户,保证高峰期服务品质。
4. 坚决打击薅羊毛:蹭促销的老炮要及早发现,限制一个就省一笔钱!
相对应的,为支持选人,定期更新一份用户画像报告(季度或半年)就是很必要的。对生命周期,价值分层,活跃行为等指标进行定期监控,可以有效帮助业务看清用户结构,思考从哪里下手。同时,也能减少每次活动都得跑一边这种数据的负担。
如何定折扣力度?业务部门常见的战术思路是:
在单个用户净利润允许的空间内,找溢价最大的礼品。比如本次促销要求用户消费1000元,这1000元净利润100,那么单个用户的促销空间就大概是10-80元,在这个成本范围内找市场价值大的礼品。不同行业差异很大,比如互联网公司促销送游戏道具,论坛金币什么的,其实没有什么实际成本,但传统企业一般都是真金白银往外砸。
这是个纯业务问题,但分析师要注意的是,用户付出的成本与折扣力度,会影响到最终促销效果。一个显而易见的矛盾是,用户都倾向于少付出,企业都倾向于降低力度。所以在促销分析,特别是事前分析时,要特别注意以下坑点:
1. 规则太复杂:业务方为了创新,搞了n复杂的活动规则,用户看都看不懂……
2. 消费要求高:业务方为了让ROI好看,提了过高的消费要求,结局吗……
3. 礼品吸引力差:不管因为什么,反正这礼品看了就没人想要……
(重点!记笔记!)总之,促销效果是做出来的,不是算出来的。如果设计本身有问题,再精妙的分析都是纸上谈兵,因此不要醉心于推演、逻辑、理论、无法自拔,忽略了消费者感受。
业务设计不是分析师的职责,但分析师可以收集过往活动效果,在业务设计有明显漏洞的时候主动提示,免得自己事后分析的时候又被逼着一遍遍找原因改报告。
看了这么多坑,分析师在促销活动分析前充分热身,有备无患:
1. 勤学习:不要把老板讲的公司战略当耳旁风,以为都是空话大话,业务部门十之八九会按大战略部署行动,所以听到老板讲话后,要主动思考什么指标与老板的讲话有关,时常观察该指标动向
2. 做笔记:你需要一个促销小档案,包含自己公司与竞品,记录以下关键字段:
活动时间,区域,名称
活动对象,参与要求,奖励力度
活动响应率,参与者人均消费,最终ROI
3. 走出去:在活动期间,至少走1次门店,问2名业务人员,聊5位用户,掌握第一手资料,更好理解数据背后的原因。问题至少要涵盖以下要点:
问店长:活动热烈否?对业务有帮助否?还想再来一次否?
问店员:活动热烈否?有什么问题没有?还想再来一次否?
问用户:规则负责否?奖励足够否?还想再来一次否?
当促销分析需求真的抵到面前时,相信通过上边的准备你已经相当的有信心与业务讨论了,还要注意一下三点:
1. 问清活动目标与考核指标。不质疑业务部门的目的,是分析师的基本职业道德,但一定要提前明确目的是什么,用什么指标考核。以防止活动效果不好的时候,业务部门异想天开,胡乱更改目标或者拿“数据不准确”之类的理由文过饰非。
2. 与业务部门过一次活动的业务逻辑。建立清晰的分析逻辑,是分析师的基本职业素质。而很多时候业务部门自己会因为目标太多,把促销规则搞得复杂无比,或者因为急于搞创新,增加了很多花里胡哨实则无用的东西进来。业务逻辑最核心的就是三点:
目标用户是谁?(涉及到后续用户画像与需求行为分析)
付出什么?(涉及到促销可带来的收入与用户参与率)
得到什么?(涉及到促销成本与用户参与率)
搞清了这三点,事前积累的素材就能用上,进行对比分析,推演本次活动情况。
3. 只对现有数据负责,提供可能的情况。如果是事前分析,就一定会涉及对未来情况的测算。数据分析师只保证自己提供的,现有数据的正确性,不要立flag赌未来,这是专业分析师与街头大仙半仙的本质区别。根据分析情况,可以提供1,2,3,4种可能,用于判断走势,最终决定让业务部门做。
抓薅羊毛是一项独立工作。看似简单,却有可能见奇效!
针对积分,优惠券,会员卡的使用情况,重点关注:
是否有少数客户大量产生和使用优惠
是否有少数门店大量产生和使用优惠
是否有特定券/活动突然出现大量领奖用户
一旦发现任一种情况,及时提交数据,用户卡号,门店编号等信息给对应业务部门,可以极大挽回公司损失。特别是在传统企业中。因为传统企业的会员卡,积分,优惠券往往出自不同部门,不同目的,缺少统一管理。实体店又经常持纵容态度,甚至店老板亲自上阵参与套惠。陈老师亲自参与的信用卡,酒店,化妆品等分析都发现过涉及金额千万以上的薅羊毛案例,及时制止,也是大功一件呢。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14