2017年数据分析的十大趋势解读
1.可视化
可视化会向整个信息产业链发展,不再仅仅限于数据分析了,而且新技术的出现,也将会加速发展。
2.规模车向组合发展
语文学的进步把大数据焦点从规模转向组合式发展,将实现大数据新一转的发展,而且不同来源的数据组合在一起可以重复使用,还有可能带来更加可靠的数据分析和数据价值。
3.云端储存数据的发展
以前传统的BI存储一般都是企业内部的,而且随着不断发展,数据也会越来越多,针对数据的增长,很多企业都会慢慢选对云端布置数据,尽管安全性和保密性仍是现在的困难,但是云端部置仍是方向。
4.超前分析
以前企业里的数据分析师要根据数据对市场、经济的发展进行预测,而事实上这是大部份都是线性分析,而目前正在向超前分析发展,也就是数据分析师利用数据模型、数据算法,在可视化的平台上进行分析和探索,从而完成超前分析。
5.数据与真实世界的结合
以前在数据信息化分析过程中,都是做的数据虚拟性分析,和现实世界交互很少,而pokemon go就是很好的解决了这上方面的问题,很好把数据分析与现实世界结合在一起了,从而完成对现实世界的分析而提供更多有用的事实。
6.自服务可视化商品
随着可视化的不断发展,很多企业也希望可以利用信息进行分析与探索,但是数据是分散的,不是统一通过IP系统来进行判断的,需要经过不同的部门、区域汇集到不同的企业部门。但是可视化分析工具一旦成为商品,那么企业应用可视化分析将会进一步减少很多成本。
7.新一代的BI将取代传统BI
随着可视化分析的不断发展,一旦被商业化,那么新一代的企业在利用分析时,将会更大的节省很多时间,各种平台的兼容性也将不再是问题。当新的BI取代传统BI的时候,也将会给用户带来新的灵活需求服务。
8.定制化分析应用和应用中的分析
尽管如此,但是仍有很多企业的员工暂时不能享受到这些先进的分析技术,但是可视化分析的发展,将会帮助企业管理层等需要数据分析的人更加便捷快速的了解到需要的数据和信息。
一旦这些分析技术应用到业务流程、程度应用、操作应用等具体场景中的时候,那么使用者就很方便的查找到他们想要的数据信息,而对于怎么分析挖掘这些工作就不用去考虑了。
9.生态系统化
一个企业里,每个人都有不同的价值观、想法,每个部门都有对应的数据,如果利用生态系统分析,把数据和计算、部门等有效的结合起来,就会帮助企业建立更好的分析决策。
10.多环境混合发展
以前企业部置可视化应用只在企业内部IT平台上应用,但是云计算的出现与发展,可以把外部和内部的数据进行扩展分析,像私有云、公共云等云计算服务,都可以帮助企业很好的利用这些数据分析,从而实现给用户提供更多的扩展与服务。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22