降维是机器学习中很有意思的一部分,很多时候它是无监督的,能够更好地刻画数据,对模型效果提升也有帮助,同时在数据可视化中也有着举足轻重的作用。
一说到降维,大家第一反应总是PCA,基本上每一本讲机器学习的书都会提到PCA,而除此之外其实还有很多很有意思的降维算法,其中就包括isomap,以及isomap中用到的MDS。
ISOMAP是‘流形学习’中的一个经典算法,流形学习贡献了很多降维算法,其中一些与很多机器学习算法也有结合,但上学的时候还看了蛮多的机器学习的书,从来没听说过流形学习的概念,还是在最新的周志华版的《机器学习》里才看到,很有意思,记录分享一下。
流形学习
流形学习应该算是个大课题了,它的基本思想就是在高维空间中发现低维结构。比如这个图:
这些点都处于一个三维空间里,但我们人一看就知道它像一块卷起来的布,图中圈出来的两个点更合理的距离是A中蓝色实线标注的距离,而不是两个点之间的欧式距离(A中蓝色虚线)。
此时如果你要用PCA降维的话,它 根本无法发现这样卷曲的结构 (因为PCA是典型的 线性降维 ,而图示的结构显然是非线性的),最后的降维结果就会一团乱麻,没法很好的反映点之间的关系。而流形学习在这样的场景就会有很好的效果。
我对流形学习本身也不太熟悉,还是直接说算法吧。
ISOMAP
在降维算法中,一种方式是提供点的坐标进行降维,如PCA;另一种方式是提供点之间的距离矩阵,ISOMAP中用到的MDS(Multidimensional Scaling)就是这样。
在计算距离的时候,最简单的方式自然是计算坐标之间的欧氏距离,但ISOMAP对此进行了改进,就像上面图示一样:
1.通过kNN(k-Nearest Neighbor)找到点的k个最近邻,将它们连接起来构造一张图。
2. 通过计算同中各点之间的最短路径,作为点之间的距离 i j
放入距离矩阵 D
3. 将 D 传给经典的MDS算法,得到降维后的结果。
ISOMAP本身的 核心就在构造点之间的距离 ,初看时不由得为其拍案叫绝,类似的思想在很多降维算法中都能看到,比如能将超高维数据进行降维可视化的t-SNE。
ISOMAP效果,可以看到选取的最短路径比较好地还原了期望的蓝色实线,用这个数据进行降维会使流形得以保持:
ISOMAP算法步骤可谓清晰明了,所以本文主要着重讲它中间用到的MDS算法,也是很有意思的。
经典MDS(Multidimensional Scaling)
如上文所述,MDS接收的输入是一个距离矩阵 D
,我们把一些点画在坐标系里:
如果只告诉一个人这些点之间的距离(假设是欧氏距离),他会丢失那些信息呢?
a. 我们对点做平移,点之间的距离是不变的。
b. 我们对点做旋转、翻转,点之间的距离是不变的。
所以想要从 D
还原到原始数据 是不可能的,因为只给了距离信息之后本身就丢掉了很多东西,不过不必担心,即使这样我们也可以对数据进行降维。
我们不妨假设:
是一个 n × 的矩阵,n为样本数,q是原始的维度
计算一个很重要的矩阵 B :
= ( n × n ) = ( ) ( ) ( 是 一 组 正 交 基 )
可以看到我们通过 对 做正交变换并不会影响 B 的值,而 正交变换刚好就是对数据做旋转、翻转操作的 。
所以如果我们想通过 B 反算出 ,肯定是没法得到真正的 , 而是它的任意一种正交变换后的结果。
B中每个元素的值为:
b i j = ∑ k = 1 x i k x j k
计算距离矩阵 D ,其中每个元素值为:
= ( x i ? x j ) 2 = ∑ k = 1 ( x i k ? x j k ) 2 = ∑ k = 1 x 2 i k + x 2 j k ? 2 x i k x j k = b i i + b j j ? 2 b i j \tag{dij_square}\label{dij_square}
这时候我们有的只有 D ,如果能通过 D 计算出 B ,再由 B 计算出 ,不就达到效果了吗。
所以思路是:从D->B->X
此时我们要对X加一些限制,前面说过我们平移所有点是不会对距离矩阵造成影响的,所以我们就把 数据的中心点平移到原点 ,对X做如下限制(去中心化):
∑ i = 1 n x i k = 0 , o r a l l k = 1..
所以有
∑ j = 1 n b i j = ∑ j = 1 n ∑ k = 1 x i k x j k = ∑ k = 1 x i k ∑ j = 1 n x j k = 0
类似的
∑ i = 1 n b i j = ∑ i = 1 n ∑ k = 1 x i k x j k = ∑ k = 1 x j k ( ∑ i = 1 n x i k ) = 0
可以看到即 B 的任意行(row)之和以及任意列(column)之和都为0了。
设T为 B
的trace,则有:
∑ i = 1 n 2 i j = ∑ i = 1 n b i i + b j j ? 2 b i j = + n b j j + 0
∑ j = 1 n 2 i j = ∑ j = 1 n b i i + b j j ? 2 b i j = n b i i + + 0
∑ i = 1 n ∑ j = 1 n 2 i j = 2 n
得到B:根据公式 我们有:
b i j = ? 1 2 ( 2 i j ? b i i ? b j j )
而(根据前面算 ∑ n i = 1 2 i j , ∑ n j = 1 2 i j 和 ∑ n i = 1 ∑ n j = 1 2 i j 的公式可以得到)
b i i b j j 2 n = + 1 n ∑ j = 1 n 2 i j = + 1 n ∑ i = 1 n 2 i j = 1 n 2 ∑ i = 1 n ∑ j = 1 n 2 i j
所以
= ? 1 2 ( 2 i j ? b i i ? b j j ) = ? 1 2 ( 2 i j ? 1 n ∑ j = 1 n 2 i j ? 1 n ∑ i = 1 n 2 i j + 2 n ) = ? 1 2 ( 2 i j ? 1 n ∑ j = 1 n 2 i j ? 1 n ∑ i = 1 n 2 i j + 1 n 2 ∑ i = 1 n ∑ j = 1 n 2 i j ) = ? 1 2 ( 2 i j ? 2 i ? ? 2 ? j + 2 ? ? )
可以看到 2 i ? 是 D 2 行均值; 2 ? j 是列均值; 2 ? ? 是矩阵的均值。
这样我们就可以通过矩阵 D
得到矩阵 B 了
因为B是对称的矩阵,所以可以通过特征分解得到:
B = Λ ? 1 = Λ
在最开始我们其实做了一个假设, 即 D 是由一个 n × 的数据生成的,如果事实是这样的, D 会是一个对称实矩阵,此时得到的 B 刚好会有 个非0的特征值,也就是说 B 的秩等于 ,如果我们想还原 ,就选择前 个特征值和特征向量;如果想要达到降维的目的,就选择制定的 p 个( p < )。
此时我们选择前 p
个特征值和特征向量,(这一步和PCA里面很类似):
B ? = ? Λ ? ? ? ( n × p ) , Λ ? ( p × p )
所以有( Λ 是特征值组成的对角矩阵):
B ? = ? Λ ? 1 2 ? Λ ? 1 2 ? = ? ?
因此
? = ? Λ ? 1 2
如果选择 p = 的话,此时得到的 ? 就是原数据去中心化并做了某种正交变换后的值了。
MDS的例子
举个例子:拿美国一些大城市之间的距离作为矩阵传进去,简单写一写代码:
import numpy as np
import matplotlib.pyplot as plt
def mds(D,q):
D = np.asarray(D)
DSquare = D**2
totalMean = np.mean(DSquare)
columnMean = np.mean(DSquare, axis = 0)
rowMean = np.mean(DSquare, axis = 1)
B = np.zeros(DSquare.shape)
for i in range(B.shape[0]):
for j in range(B.shape[1]):
B[i][j] = -0.5*(DSquare[i][j] - rowMean[i] - columnMean[j]+totalMean)
eigVal,eigVec = np.linalg.eig(B)
X = np.dot(eigVec[:,:q],np.sqrt(np.diag(eigVal[:q])))
return X
D = [[0,587,1212,701,1936,604,748,2139,2182,543],
[587,0,920,940,1745,1188,713,1858,1737,597],
[1212,920,0,879,831,1726,1631,949,1021,1494],
[701,940,879,0,1374,968,1420,1645,1891,1220],
[1936,1745,831,1374,0,2339,2451,347,959,2300],
[604,1188,1726,968,2339,0,1092,2594,2734,923],
[748,713,1631,1420,2451,1092,0,2571,2408,205],
[2139,1858,949,1645,347,2594,2571,0,678,2442],
[2182,1737,1021,1891,959,2734,2408,678,0,2329],
[543,597,1494,1220,2300,923,205,2442,2329,0]]
label = ['Atlanta','Chicago','Denver','Houston','Los Angeles','Miami','New York','San Francisco','Seattle','Washington, DC']
X = mds(D,2)
plt.plot(X[:,0],X[:,1],'o')
for i in range(X.shape[0]):
plt.text(X[i,0]+25,X[i,1]-15,label[i])
plt.show()
最后画出来的图中,各个城市的位置和真实世界中的相对位置都差不多:
注意,这个例子中其实也有‘流形’在里面,因为我们的地球其实是一个三维,而城市间距离刻画的是在球面上的距离,所以最后如果你去看求出来的特征值,并不像前面说的那样只有q个非0的值。数据分析师培训
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20