大数据时代,品牌广告价值究竟该如何衡量
用曝光和点击来衡量品牌广告价值并不合适
《盗梦空间》中有一句台词是这样说的:这个地球上力量最强大的,就是往人们的头脑里植入一个念头,这个念头会生根发芽,最终变成不可阻挡的行动。
品牌广告要干的就是这个事,向用户头脑中植入一个念头,促成他们下一步行动。这正是品牌广告的生命和魅力所在。但在2015年一家咨询公司的调研结果中,却发现一个很有意思的现象。调研机构向代理行业中一些有话语权和决策权的人问“你们认为一个成功的品牌营销的活动,期望它是什么结果”,有56%的人说最重要的是有没有给用户留下品牌印象和改变他们的购买意愿。第二个问题”在实际执行的时候你们是如何测量的呢“,69%的人选择通过曝光和点击
。 把这两个回答放在一起对比发现:我们想要测量的,是我们试图植入用户脑子里的念头,是一种主观的态度。但实际测量的却是用户表现出来的一些微弱的行为。同样,在社会科学领域也都存在这样的情况。我们最关心的指标难以量化,或者难以观测,于是就用一个比较相关的、可以观测的、可以量化的指标来代替。
但是,在品牌广告领域,这样的替代是否合理?曝光和点击真的能够衡量我们想要衡量的用户脑子里的主观态度吗?
关于曝光,在Sizmek发布的《2015年中国数字广告可见性报告》中表明,大概有50%以上的广告并没有被看见。而对于可见的曝光,广告真真实实出现 在屏幕上,用户就真的会看到吗?有没有可能会视而不见呢?以大家的生活经验来推断,这种情况还是非常有可能的。所以如果用曝光来衡量品牌广告效果的话,可 能会有很大的注水或者泡沫成分,因为很多曝光实际上并没有对用户形成任何影响。
关于点击,这确实是个有效且重要的指标,但是当我们衡量广告对用户影响的时候,点击不是唯一的。有些广告会让我们会心一笑,有些广告让我们恍然大悟,有些 广告能触动我们内心最柔软的部分,当然,也有一些广告,让我们深深厌恶。但是这些深刻的影响却都不会形成点击。如果再用点击去衡量,就会漏掉大量正面的影 响,也掩盖了有可能存在的负面影响。再比如说视频前贴片广告,当你在一集一集追热剧的时候,恐怕也不会点击视频前贴片来打断你的观影行为。由此可见,用点 击来衡量广告效果也是不合适的。因此,我们可以得出结论:用曝光来衡量,就像是买到注水肉;用点击来衡量,则是捡了芝麻,掉了西瓜。
品牌广告对用户产生认知、情绪、行为三方面影响,但目前的测量方法存在缺陷谈到广告测量,通常大家会认为是独立第三方公司应该做的事情。确实,如果从避免利益冲突的角度,当然应该由独立第三方完成。但是从推动行业进步的角度,应 该是大家共同努力的目标。一方面,品牌广告测量做好了,能吸引更多预算流入数字媒体,大家都能受益;另一方面,随着移动设备的普及,大数据和人工智能技术 的日趋成熟,以前不可测量的东西,现在变得可以测量。数字媒体由于和用户有直接交互,也有着独特的优势。
那如何来解决呢?
行业里通常把品牌广告对用户的影响分为三方面:认知、情绪、行为。以前我们会用漏斗来表达这三种影响的先后顺序,先有认知,再有情绪,再有行动。但是进入 移动互联网时代,人们对品牌信息的获取是多渠道、多层次、无处不在的。所以搜狐认为一个品牌广告会对不同的人群同时产生三个不同方面的影响。我们要测量, 也要同时测量三个方面的影响。
针对这三方面,目前的测量方法达到一个什么程度呢?
首先,在认知方面。目前大家用的主要是 GRP/PV/TA 等触达指标。正如前面所讲,触达是发送,而发送和收到是完全不同的两个概念。触达的人群里,真正收到广告且领会广告想传达的信息,有20%吗?表示存疑。
其次,在情绪方面。用户喜欢我们的广告吗?不知道。甚至我们在实际投放中,发现有些广告对受众的情绪影响是负面的,而且这并非个案。
最后,在行为方面,可以说行为是目前衡量是最充分的,虽然点击不能代表认知和情绪,但是它在行为方面还是比较有效的。
那么,将三者综合算一下,相对于我们想要测量的目标,目前的测量手段只达成了20%。
这80%的差距,给媒体带来了巨大的伤害。以视频广告为例,因为80%的效果目前在黑洞里,无法被测量,也无从被认可。投放广告的人心里没底,就要加大投放,同时压低价格。导致媒体充斥大量无效广告,对用户,对媒体,对广告主,是个多输的局面。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21