
最大期望算法(EM)
K均值算法非常简单,相信读者都可以轻松地理解它。但下面将要介绍的EM算法就要困难许多了,它与极大似然估计密切相关。
1 算法原理
不妨从一个例子开始我们的讨论,假设现在有100个人的身高数据,而且这100条数据是随机抽取的。一个常识性的看法是,男性身高满足一定的分布(例如正态分布),女性身高也满足一定的分布,但这两个分布的参数不同。我们现在不仅不知道男女身高分布的参数,甚至不知道这100条数据哪些是来自男性,哪些是来自女性。这正符合聚类问题的假设,除了数据本身以外,并不知道其他任何信息。而我们的目的正是推断每个数据应该属于哪个分类。所以对于每个样本,都有两个需要被估计的项,一个就是它到底是来自男性身高的分布,还是来自女性身高的分布。另外一个就是,男女身高分布的参数各是多少。
既然我们要估计知道A和B两组参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。所以可能想到的一种方法就是考虑首先赋予A某种初值,以此得到B的估计,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。你是否隐约想到了什么?是的,这恰恰是K均值算法的本质,所以说K均值算法中其实蕴含了EM算法的本质。
EM算法,又称期望最大化(Expectation Maximization)算法。在男女身高的问题里面,可以先随便猜一下男生身高的正态分布参数:比如可以假设男生身高的均值是1.7米,方差是0.1米。当然,这仅仅是我们的一个猜测,最开始肯定不会太准确。但基于这个猜测,便可计算出每个人更可能属于男性分布还是属于女性分布。例如有个人的身高是1.75米,显然它更可能属于男性身高这个分布。据此,我们为每条数据都划定了一个归属。接下来就可以根据最大似然法,通过这些被大概认为是男性的若干条数据来重新估计男性身高正态分布的参数,女性的那个分布同样方法重新估计。然后,当更新了这两个分布的时候,每一个属于这两个分布的概率又发生了改变,那么就再需要调整参数。如此迭代,直到参数基本不再发生变化为止。数据分析师培训
在正式介绍EM算法的原理和执行过程之前,此处首先对边缘分布的概念稍作补充。
2. 收敛探讨
在下一篇中我们将讨论高斯混合模型(GMM),相当于是EM的一种实现。并给出在R中进行数据挖掘的实例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08