大数据将发展成为智能电网基础性技术
今天,大数据概念的讨论越来越少,大数据应用却如雨后春笋般涌出,这预示着大数据产业已经告别了概念炒作,进入了实实在在的落地阶段。在这一背景下,包括电力、金融、教育、医疗甚至农业等诸多行业正在大力拥抱大数据,如何拥有大数据思维,如何善用大数据分析,如何以大数据激发传统产业活力等问题成为关注重点。虽然大数据产业的发展刚刚起步,但是人们对于未来大数据应用的美好前景充满了期待。
当前,能源互联网正在全球范围内兴起,大数据技术加速在电力行业落地。在日前召开的“中国电力科学研究院大数据技术研讨会”上,业界各方就电力大数据技术展开了讨论,大数据在电力行业的应用前景得到了广泛认可。可以预见,随着大数据技术的日渐成熟和更多电力大数据应用的落地,大数据将成为电网的基础性技术,为构建更加智能、弹性、绿色、高效的电力互联网奠定基础。
电力拥抱大数据
“智能电网大数据是电力系统和相关领域数据的有机融合,是一系列对数据处理应用的理论、方法与技术,是一种对规律的全新认识论和价值萃取思想。”中国工程院院士、中国电科院院长郭剑波在会上提出了对智能电网大数据的认识,他表示,智能电网大数据的应用将实现割裂的数据资源向有效的数据资产转化,支撑更全面的分析、更准确的预测及更具价值的决策支持。
中国科学院周孝信院士指出,我国能源转型的目标是建设清洁低碳、安全高效、可持续发展的新一代能源系统。大数据及传感、信息、通信等技术的应用,将会对未来能源电力系统的系统形态、运行调度和市场交易模式产生重大影响。
对于大数据在智能电网中的应用,中国电科院副院长王继业表示,原有的基于物理模型的分析方法难以满足需求,数据驱动的方法将发挥重要作用。当前,电网智能化引发了内部数据的激增,智能电网各个环节产生了大量的高密度、高价值的多维多系统数据。因而,大数据未来将在智能电网中发挥重要作用。智能电网具有开放性、不确定性和普遍关联性,大数据能够以全量数据来反映整个电网系统的特征,提供全景和全过程的研究视角。在大数据技术的支撑下,智能电网将具备主动预测、主动配置、主动维修以及基于互联网的主动营销等能力。
王继业认为,大数据应用可以分为五个阶段。第一阶段是完成数据抽取与整合。这个阶段需要将不同的数据在数据源和时间片段上进行统一的整合与处理。第二阶段是统计分析,即从不同的时间、维度、颗粒度等方面进行规律的总结和业务解读,这是大数据应用的初级阶段,而完成了这两个阶段以后,就可以对大数据业务和问题进行解读。第三阶段是对大数据的深度分析,从数据出发,利用机器学习等技术挖掘数据潜在的关联特征,找寻业务规律。第四阶段是业务建模,把业务的模型转化为数据模型,最终转变为数学模型。第五阶段是数据模型的固化,即模型的系统化,将分析思路和业务系统进行对接,最终形成一套固化的大数据分析系统。
机遇与挑战并存
虽然大数据正在应用到越来越多的行业中,但是我们需要看到的是,今天的大数据技术还不够成熟,相关的应用仍处在探索阶段。中国信息通信研究院通信标准所副所长何宝宏在会上表示,大数据孤岛不容忽视,数据流通成为困扰业界的突出问题。在今天这个信息时代,数据已经成为资产,最终还要变成商品,而商品就意味着会流通。今天的商品流通规则实际上已经无法适应大数据的发展,因而需要建立针对大数据流通的新的制度和方法。
电力行业如何更好地引入大数据?对此,中国工程院院士薛禹胜提出了思考和建议。他表示,大数据和人工智能技术已经在一些行业得到了应用,然而对于电力行业而言,如何真正发挥大数据的价值还是值得探索的问题。大数据思维提倡的不仅仅是共享,还包括科学研究范式之间的协调。在以因果分析为主导的电力系统中,应用大数据可辅助传统的模型驱动方法。
国家电网信息通信部副主任魏晓菁认为,大数据不仅仅是技术,更是一种思维和方法,电力大数据需要将“用大数据说话、用大数据决策、用大数据管理、用大数据创新”的理念融合到行业实践中,充分利用大数据思想,在原有传统统计思想的基础上扩展因果关系、相关关系等分析思路,将大数据和生产实际、业务需求紧密结合起来,从而产生更大的价值。
“面对众多复杂和不确定的变化,互动与主动的需求,电网需要快速提升实时感知、高速通信和快速响应能力,建立一套智能化体系来应对冲击和挑战。”王继业认为,科学发展将有力带动大数据的发展和应用,机器学习、5G通信、无人驾驶、AlphaGo和下一代搜索等全球科技热点都是基于数据的感知、传递、计算、学习,都离不开大数据的支撑。大电网互联的稳定、新能源消纳和广泛接入,以及放开的市场交易机制和互动要求都将拉动电力行业对大数据技术应用的需求,推动共享利用、质量提升、融合统一、分析挖掘等电力大数据关键领域实现突破。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31