机器学习中的kNN算法及Matlab实例
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
尽管kNN算法的思想比较简单,但它仍然是一种非常重要的机器学习(或数据挖掘)算法。在2006年12月召开的 IEEE
International Conference on Data Mining (ICDM),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参加文献【1】, K最近邻算法即位列其中。
二、在Matlab中利用kNN进行最近邻查询
如果手头有一些数据点(以及它们的特征向量)构成的数据集,对于一个查询点,我们该如何高效地从数据集中找到它的最近邻呢?最通常的方法是基于k-d-tree进行最近邻搜索。
KNN算法不仅可以用于分类,还可以用于回归,但主要应用于回归,所以下面我们就演示在MATLAB中利用KNN算法进行数据挖掘的基本方法。
首先在Matlab中载入数据,代码如下,其中meas( : , 3:4)相当于取出(之前文章中的)Petal.Length和Petal.Width这两列数据,一共150行,三类鸢尾花每类各50行。
[plain] view plain copy
load fisheriris
x = meas(:,3:4);
然后我们可以借助下面的代码来用图形化的方式展示一下数据的分布情况:
[plain] view plain copy
gscatter(x(:,1),x(:,2),species)
legend('Location','best')
执行上述代码,结果如下图所示:
然后我们在引入一个新的查询点,并在图上把该点用×标识出来:
[plain] view plain copy
newpoint = [5 1.45];
line(newpoint(1),newpoint(2),'marker','x','color','k',...
'markersize',10,'linewidth',2)
结果如下图所示:
接下来建立一个基于KD-Tree的最近邻搜索模型,查询目标点附近的10个最近邻居,并在图中用圆圈标识出来。
[plain] view plain copy
>> Mdl = KDTreeSearcher(x)
Mdl =
KDTreeSearcher with properties:
BucketSize: 50
Distance: 'euclidean'
DistParameter: []
X: [150x2 double]
>> [n,d] = knnsearch(Mdl,newpoint,'k',10);
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)
下图显示确实找出了查询点周围的若干最近邻居,但是好像只要8个,
不用着急,其实系统确实找到了10个最近邻居,但是其中有两对数据点完全重合,所以在图上你只能看到8个,不妨把所有数据都输出来看看,如下所示,可知确实是10个。
[plain] view plain copy
>> x(n,:)
ans =
5.0000 1.5000
4.9000 1.5000
4.9000 1.5000
5.1000 1.5000
5.1000 1.6000
4.8000 1.4000
5.0000 1.7000
4.7000 1.4000
4.7000 1.4000
4.7000 1.5000
KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。例如下面的代码告诉我们,待查询点的邻接中有80%是versicolor类型的鸢尾花,所以如果采用KNN来进行分类,那么待查询点的预测分类结果就应该是versicolor类型。
[plain] view plain copy
>> tabulate(species(n))
Value Count Percent
virginica 2 20.00%
versicolor 8 80.00%
在利用 KNN方法进行类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
我们还要说明在Matlab中使用KDTreeSearcher进行最近邻搜索时,距离度量的类型可以是欧拉距离('euclidean')、曼哈顿距离('cityblock')、闵可夫斯基距离('minkowski')、切比雪夫距离('chebychev'),缺省情况下系统使用欧拉距离。你甚至还可以自定义距离函数,然后使用knnsearch()函数来进行最近邻搜索,具体可以查看MATLAB的帮助文档,我们不具体展开。
三、利用kNN进行数据挖掘的实例
下面我们来演示在MATLAB构建kNN分类器,并以此为基础进行数据挖掘的具体步骤。首先还是载入鸢尾花数据,不同的是这次我们使用全部四个特征来训练模型。
[plain] view plain copy
load fisheriris
X = meas; % Use all data for fitting
Y = species; % Response data
然后使用fitcknn()函数来训练分类器模型。
[plain] view plain copy
>> Mdl = fitcknn(X,Y)
Mdl =
ClassificationKNN
ResponseName: 'Y'
CategoricalPredictors: []
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
NumObservations: 150
Distance: 'euclidean'
NumNeighbors: 1
你可以看到默认情况下,最近邻的数量为1,下面我们把它调整为4。
[plain] view plain copy
Mdl.NumNeighbors = 4;
或者你可以使用下面的代码来完成上面同样的任务:
[plain] view plain copy
Mdl = fitcknn(X,Y,'NumNeighbors',4);
既然有了模型,我们能否利用它来执行以下预测分类呢,具体来说此时我们需要使用predict()函数,例如
[plain] view plain copy
>> flwr = [5.0 3.0 5.0 1.45];
>> flwrClass = predict(Mdl,flwr)
flwrClass =
'versicolor'
最后,我们还可以来评估一下建立的kNN分类模型的情况。例如你可以从已经建好的模型中建立一个cross-validated 分类器:
[plain] view plain copy
CVMdl = crossval(Mdl);
然后再来看看cross-validation loss,它给出了在对那些没有用来训练的数据进行预测时每一个交叉检验模型的平均损失
[plain] view plain copy
>> kloss = kfoldLoss(CVMdl)
kloss =
0.0333
再来检验一下resubstitution loss, which,默认情况下,它给出的是模型Mdl预测结果中被错误分类的数据占比。
[plain] view plain copy
>> rloss = resubLoss(Mdl)
rloss =
0.0400
如你所见,cross-validated 分类准确度与 resubstitution 准确度大致相近。所以你可以认为你的模型在面对新数据时(假设新数据同训练数据具有相同分布的话),分类错误的可能性大约是 4% 。
四、关于k值的选择
kNN算法在分类时的主要不足在于,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。因此可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
从另外一个角度来说,算法中k值的选择对模型本身及其对数据分类的判定结果都会产生重要影响。如果选择较小的k值,就相当于用较小的领域中的训练实例来进行预测,学习的近似误差会减小,只有与输入实例较为接近(相似的)训练实例才会对预测结果起作用。但缺点是“学习”的估计误差会增大。预测结果会对近邻的实例点非常敏感。如果临近的实例点恰巧是噪声,预测就会出现错误。换言之,k值的减小意味着整体模型变得复杂,容易发成过拟合。数据分析师培训
如果选择较大的k值,就相当于用较大的邻域中的训练实例进行预测,其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,使预测发生错误。k值的增大就意味着整体的模型变得简单。
在应用中,k值一般推荐取一个相对比较小的数值。并可以通过交叉验证法来帮助选取最优k值。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20