机器学习中的Accuracy,Precision,Recall和F1-Score
在模式识别和信息检索领域,二分类的问题(binary classification)是常会遇到的一类问题。例如,银行的信用卡中心每天都会收到很多的信用卡申请,银行必须根据客户的一些资料来预测这个客户是否有较高的违约风险,并据此判断是否要核发信用卡给该名客户。显然“是否会违约”就是一个二分类的问题。
如果你已经根据训练数据建立了一个模型,接下来你会用一些测试数据来评估你模型的效果,即 Evaluate model on held-out(留存) test data。通常你可能会考虑的评估指标主要有
Accuracy
Precision
Recall
F1 Score
但是这些指标常常令人混淆不清,下面我们逐个介绍并加以辨析。作为一个例子,来看表中这组分类结果
1、Accuracy
2、Precision
尽管 Accuracy 和 Precision 都可以翻译成“准确率”,但是二者含义并不相同。Precision 又称为 Positive predictive value,对于一个机器学习模型而言,假设有下图所示的预测结果:
那么,Precision = TP/(TP+FP),如果我们将B视作Positive class,那么Precision就是
“被预测成B且正确的/(被预测成B且正确的+被预测成B但错误的),即有
如果现在讨论的是一个信息检索问题,那么Precision,通常可译为“查准率”,(假设我们的目标是检索B)就是指:检索到的正确的信息(或文档)数(正确就是指与B相关)/ {检索到的正确的信息数(IR认为与B相关且确实相关) + 检索到的错误的信息数(IR认为与B相关但并不相关)}
3、Recall
Recall (常常译为”召回率“)是与 Precision 相对应的另外一个广泛用于信息检索和统计学分类领域的度量值,用来评价结果的质量。
Recall = TP/(TP + FN),同样如果我们将B视作Positive class,那么 Recall 就是
“被预测成B且正确的/(被预测成B且正确的+被预测成A但错误的(其实本来是B的)),即有
如果现在讨论的是一个信息检索问题,那么Recall通常可译为“查全率”,(假设我们的目标是检索B)就是指:检索到的正确的信息(或文档)数(正确就是指与B相关)/ {检索到的正确的信息数(IR认为与B相关且确实相关) + 没有检索到的但却相关的信息数(本来与B相关但IR认为并不相关所以未检索到的)},即检索出的相关文档数和文档库中所有的相关文档数的比率。
显然, Precision 和 Recall 两者取值在0和1之间,数值越接近1,查准率或查全率就越高。
4、F1 Score
F1 score (或称 F-score 或 F-measure) ,是一个兼顾考虑了Precision 和 Recall 的评估指标。通常, F-measure 就是指 Precision 和 Recall 的调和平均数(Harmonic mean),即数据分析师培训
更广泛的,对于一个实数β,还可以定义
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20