医疗人工智能和大数据的泡沫正在袭来
人工智能和大数据是今年最热的话题,在国内投资界和产业界都如火如荼,特别是在AlphaGO横扫围棋界后更是呈现一片欣欣向荣的势态。大数据与人工智能目前在医学类的应用也是层出不穷,尤其是在图像识别、影像诊断上都显示了很好的前景。
但是在比较复杂的系统中,大数据挖掘和人工智能可能会受挫,大数据技术本身不是泡沫,但是利用大数据和人工智能名头的相关产业的泡沫正在袭来……
医药人工智能研究受挫,IBM沃森机器人遭遇冷板凳
沃森是IBM的杰出计算系统,自从参加了2011年的智力节目《危险边缘》,在一场与两名最受瞩目的选手对决中胜出后,就成功博得了世人的瞩目。在2013年10月的新闻发布会中,IBM宣称安德森癌症中心,德克萨斯大学系统之一,正在使用沃森机器人系统用于研究根治癌症。
但是近期,据福布斯的报道指出,IBM与该世界顶尖癌症研究机构的合作关系正趋于破裂。此前安德森癌症中心证实:此项目从去年开始就已经暂停。安德森癌症中心也正在积极寻求其他合作方的竞价,未来这些合作方有可能取代IBM。来自德克萨斯大学审计机构的一份报告指出,安德森癌症中心已经花费了6200万美金用于此项目,但尚未实现目标。审计记录显示项目重点更换了数次,第一次重点研究白血病、然后是另一个、接下来又是肺癌。最后毫无进展。
虽然安德森癌症中心与IBM的沃森机器人确立合作的出发点确实是积极的,但是最终项目却没有完成,而且还花费了巨额资金。与安德森癌症中心合作的结果并不令人满意。即使双方合作破裂是安德森方面的一个错误决策,这仍然从侧面说明了IBM的人工智能和大数据目前在医药领域尚未取得重大建树。
大数据医疗的应用方向有哪些?
目前大数据主要应用于以下五大方向的15个应用:
从以上应用范畴中我们发现,为什么在复杂疾病的数据挖掘中,大数据并没有深入发展呢?
因为复杂疾病是非标类的产品,无论是在学术界还是在临床治疗上都有非常大的争议,有时候是向正有时候是向反,对于一些疾病甚至很多的研究报告会出现截然相反的结果,而且学术争议是一直都存在的,因此复杂疾病是非常难以判断的。
医疗与下围棋大不相同,围棋的下法有一个最优概率的计算,但是在医学中,哪怕是51%的概率你也不能说就一定比49%更好,而且医学中小概率事件发生是很普遍的。
非结构化病历数据的挑战
目前我国各医院系统并不相连,因此没有一个统一规范的临床结构化病历模型标准,不同医院的病历书写也存在很大的差异化,非结构化的数据使得大数据在我国的医疗环境下很难做到高效率的数据挖掘。
还有一个很现实的问题那就是——中国的绝大部分临床病历实际价值非常的小。因为医生的临床工作很忙,所以基层医院的病历写作不规范,而上级三甲医院的病历基本上都靠复制黏贴,因此想要从病历的结构化和自然语言中是很难做到任何有效的分析的。
除此之外,目前中国普遍的临床用药和检查都有很多的问题,临床中的实际治疗是千变万化的,但是你在患者病历中是看不出来的,因为中国的医生很多都是以完成实际工作和不要扣钱为主,因此就会做一些套式的病历,以及靠复制黏贴来随意应付paperwork,患者的细微诊断细节很多时候从病历上根本无法体现,所以每个病历的治疗效果可能都千差万别。
大数据很多是从既有数据中进行挖掘,但是中国的患者离开医院后失访率非常高,这与美国的医疗情况不同,美国的患者离院之后的诊后延续性比较好。数据如果不能持续向前发展,那大数据就会变成死数据,并产生很大的泡沫。但这还不是泡沫的根本!
医疗大数据泡沫的根本在于无法转动商业模式
大数据泡沫的根本在于商业模式无法转动,或者无法转动到比较大的规模就出现了各种各样的问题。产业界都是一轮泡沫向另一轮泡沫不断转移的。在医疗大数据产业中,不管是数据临床诊断还是肿瘤数据分析,目前只有两个比较主要的商业模式:
1. 临床应用通过医院向患者收费,每一个医院和科室相当于一个代理,这样进行层层转移,但是收费并且市场教育成本会非常的高,反之再有地推各种成本情况下,毛利率会很低。
2. 向药企做药物研发、临床观察的数据辅助分析。
但是在国内,原研药的研发实际上的市场份额并不是很高,国内企业对于新药的研发投入并不大,而跨国企业的研发主要在国外总部,所以虽然这一商业模式有向后延续的趋势,但是发展优势并不明显。
同时还有一个很现实的问题,大数据企业可能需要每年花费上亿的成本去做临床数据辅助分析系统,但是药企可能只愿意花费几百万来支付你提供的服务,这就会导致比较严重的入不敷出,而且这不是一个短期的状态而是常态化的。在现阶段,想要让药企大规模的去支付改善药物研发的费用比较难,反而现在单纯做临床观察系统、患者招募的需求更广阔一些。
最后,无论在中国还是美国,医疗大数据产业很难适合创业公司去做,就像很多创新药物只能由礼来、辉瑞等的大型跨国药企来宣布和承受失败……创业公司即使短期内融到巨资来做这个事情,目前也看不到任何规模化收入的可能性。也许2、3 年后情况会有好转,但是资本情况又会有不断的变化,可谓是路漫漫而修远兮……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31