
在MATLAB中进行基于SVM的数据分析
MATLAB除了可以被用来进行信号处理之外,还可以用来完成一些数据挖掘任务。而说到数据挖掘,你脑海里一定会闪现过许多熟悉的算法,例如决策树、朴素贝叶斯、逻辑回归,以及支持向量机(SVM)等等。下面我们就以SVM为例来看看利用MATLAB进行数据挖掘是一种怎样的体验。
MATLAB中用来进行基于SVM的数据挖掘的核心函数是 svmclassify() 和 svmtrain()。从函数名就能很容易地看出来,后者是用来进行模型训练的,而前者则是用后者训练出来的模型来对数据进行分类。首先我们来看看线性可分的情况,后续我们还会讨论更复杂的线性不可分的例子。
这里所使用的数据是费希尔的鸢尾花数据,我们首先导入数据(数据一共有150行,取前2/3作为训练数据,对应的类别是setosa和versicolor)
[plain] view plain copy
>> load fisheriris
>> xdata = meas(1:100,3:4);
>> group = species(1:100);
函数 svmtrain()的调用格式如下:
SVMStruct = svmtrain(Training,Group,Name,Value)
其中Training是feature向量,Group表示分属之类别。Name和Value是可选参数(也就是可以不写),而且必须成对使用,其中Name表示参数名,而Value则对应相应的参数取值。由于Name-Value的可取参数对非常之多,我们这里不一一列举(有需要的读者可以参阅MATLAB的帮助文档以了解更多),仅仅给出两个例子:比如,如果把Name置为'showplot',就可以通过紧跟其后的Value取值来控制是否将训练模型绘制成图,默认是'False',表示不会图。另外一个有用的参数是'kernel_function',如果你对SVM算法比较了解的话应该知道,核函数主要是通过空间转换来将原本线性不可分的数据,转换到另外一个线性可分的空间上,后续我们还会给出具体例子。
下面的代码就可以训练得到一个分类模型:
[plain] view plain copy
>> svmStruct = svmtrain(xdata,group,'ShowPlot',true);
上述代码的执行结果如下图所示(注意因为我们为参数'showplot'赋值为True,所以系统会绘制出图):
下面我们用svmclassify() 来测试一下模型的分类能力:
[plain] view plain copy
<span style="font-size:18px;">>> testdata = [4 1.5;1.8 0.38];
>> species = svmclassify(svmStruct,testdata,'ShowPlot',true)
species =
'versicolor'
'setosa'</span>
如果觉得文字表述的结果不够形象,还可以用图形来表示:
[plain] view plain copy
<span style="font-size:18px;">>> hold on;
>> plot(testdata(:,1),testdata(:,2),'ro','MarkerSize',12);
>> hold off</span>
上述代码的执行结果如图所示(其中被圆周圈起来的就是我们引入的测试数据):
如果数据是线性不可分的,SVM是否能够应对呢?来看下面的例子,首先,我们生成两组数据data1和data2
[plain] view plain copy
>> rng(1); % For reproducibility
r = sqrt(rand(100,1)); % Radius
t = 2*pi*rand(100,1); % Angle
data1 = [r.*cos(t), r.*sin(t)]; % Points
>> r2 = sqrt(3*rand(100,1)+1); % Radius
t2 = 2*pi*rand(100,1); % Angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
data1和data2是线性不可分的。用图形来表示或许更加一目了然,所以我们来绘图:
[plain] view plain copy
>> figure;
plot(data1(:,1),data1(:,2),'r.','MarkerSize',15)
hold on
plot(data2(:,1),data2(:,2),'b.','MarkerSize',15)
ezpolar(@(x)1);ezpolar(@(x)2);
axis equal
hold off
上述代码的执行结果如下:
然后我们把两组数据组织到一起,并加上分类标签‘+1’和‘-1’。
[plain] view plain copy
>> data3 = [data1;data2];
theclass = ones(200,1);
theclass(1:100) = -1;
然后分别用高斯核函数与多项式核函数来进行空间转换,并在此基础上进行基于SVM的分类:
[plain] view plain copy
>> svmModel = svmtrain(data3, theclass, 'kernel_function','rbf','ShowPlot',true);
>> svmModel = svmtrain(data3, theclass, 'kernel_function','polynomial','ShowPlot',true);
下图基于高斯核函数的SVM分类结果:
下图基于多项式核函数的SVM分类结果:
可见原本不可分的数据,现在已经被成功分类了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02