
在MATLAB中进行基于SVM的数据分析
MATLAB除了可以被用来进行信号处理之外,还可以用来完成一些数据挖掘任务。而说到数据挖掘,你脑海里一定会闪现过许多熟悉的算法,例如决策树、朴素贝叶斯、逻辑回归,以及支持向量机(SVM)等等。下面我们就以SVM为例来看看利用MATLAB进行数据挖掘是一种怎样的体验。
MATLAB中用来进行基于SVM的数据挖掘的核心函数是 svmclassify() 和 svmtrain()。从函数名就能很容易地看出来,后者是用来进行模型训练的,而前者则是用后者训练出来的模型来对数据进行分类。首先我们来看看线性可分的情况,后续我们还会讨论更复杂的线性不可分的例子。
这里所使用的数据是费希尔的鸢尾花数据,我们首先导入数据(数据一共有150行,取前2/3作为训练数据,对应的类别是setosa和versicolor)
[plain] view plain copy
>> load fisheriris
>> xdata = meas(1:100,3:4);
>> group = species(1:100);
函数 svmtrain()的调用格式如下:
SVMStruct = svmtrain(Training,Group,Name,Value)
其中Training是feature向量,Group表示分属之类别。Name和Value是可选参数(也就是可以不写),而且必须成对使用,其中Name表示参数名,而Value则对应相应的参数取值。由于Name-Value的可取参数对非常之多,我们这里不一一列举(有需要的读者可以参阅MATLAB的帮助文档以了解更多),仅仅给出两个例子:比如,如果把Name置为'showplot',就可以通过紧跟其后的Value取值来控制是否将训练模型绘制成图,默认是'False',表示不会图。另外一个有用的参数是'kernel_function',如果你对SVM算法比较了解的话应该知道,核函数主要是通过空间转换来将原本线性不可分的数据,转换到另外一个线性可分的空间上,后续我们还会给出具体例子。
下面的代码就可以训练得到一个分类模型:
[plain] view plain copy
>> svmStruct = svmtrain(xdata,group,'ShowPlot',true);
上述代码的执行结果如下图所示(注意因为我们为参数'showplot'赋值为True,所以系统会绘制出图):
下面我们用svmclassify() 来测试一下模型的分类能力:
[plain] view plain copy
<span style="font-size:18px;">>> testdata = [4 1.5;1.8 0.38];
>> species = svmclassify(svmStruct,testdata,'ShowPlot',true)
species =
'versicolor'
'setosa'</span>
如果觉得文字表述的结果不够形象,还可以用图形来表示:
[plain] view plain copy
<span style="font-size:18px;">>> hold on;
>> plot(testdata(:,1),testdata(:,2),'ro','MarkerSize',12);
>> hold off</span>
上述代码的执行结果如图所示(其中被圆周圈起来的就是我们引入的测试数据):
如果数据是线性不可分的,SVM是否能够应对呢?来看下面的例子,首先,我们生成两组数据data1和data2
[plain] view plain copy
>> rng(1); % For reproducibility
r = sqrt(rand(100,1)); % Radius
t = 2*pi*rand(100,1); % Angle
data1 = [r.*cos(t), r.*sin(t)]; % Points
>> r2 = sqrt(3*rand(100,1)+1); % Radius
t2 = 2*pi*rand(100,1); % Angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
data1和data2是线性不可分的。用图形来表示或许更加一目了然,所以我们来绘图:
[plain] view plain copy
>> figure;
plot(data1(:,1),data1(:,2),'r.','MarkerSize',15)
hold on
plot(data2(:,1),data2(:,2),'b.','MarkerSize',15)
ezpolar(@(x)1);ezpolar(@(x)2);
axis equal
hold off
上述代码的执行结果如下:
然后我们把两组数据组织到一起,并加上分类标签‘+1’和‘-1’。
[plain] view plain copy
>> data3 = [data1;data2];
theclass = ones(200,1);
theclass(1:100) = -1;
然后分别用高斯核函数与多项式核函数来进行空间转换,并在此基础上进行基于SVM的分类:
[plain] view plain copy
>> svmModel = svmtrain(data3, theclass, 'kernel_function','rbf','ShowPlot',true);
>> svmModel = svmtrain(data3, theclass, 'kernel_function','polynomial','ShowPlot',true);
下图基于高斯核函数的SVM分类结果:
下图基于多项式核函数的SVM分类结果:
可见原本不可分的数据,现在已经被成功分类了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10