在MATLAB中进行基于SVM的数据分析
MATLAB除了可以被用来进行信号处理之外,还可以用来完成一些数据挖掘任务。而说到数据挖掘,你脑海里一定会闪现过许多熟悉的算法,例如决策树、朴素贝叶斯、逻辑回归,以及支持向量机(SVM)等等。下面我们就以SVM为例来看看利用MATLAB进行数据挖掘是一种怎样的体验。
MATLAB中用来进行基于SVM的数据挖掘的核心函数是 svmclassify() 和 svmtrain()。从函数名就能很容易地看出来,后者是用来进行模型训练的,而前者则是用后者训练出来的模型来对数据进行分类。首先我们来看看线性可分的情况,后续我们还会讨论更复杂的线性不可分的例子。
这里所使用的数据是费希尔的鸢尾花数据,我们首先导入数据(数据一共有150行,取前2/3作为训练数据,对应的类别是setosa和versicolor)
[plain] view plain copy
>> load fisheriris
>> xdata = meas(1:100,3:4);
>> group = species(1:100);
函数 svmtrain()的调用格式如下:
SVMStruct = svmtrain(Training,Group,Name,Value)
其中Training是feature向量,Group表示分属之类别。Name和Value是可选参数(也就是可以不写),而且必须成对使用,其中Name表示参数名,而Value则对应相应的参数取值。由于Name-Value的可取参数对非常之多,我们这里不一一列举(有需要的读者可以参阅MATLAB的帮助文档以了解更多),仅仅给出两个例子:比如,如果把Name置为'showplot',就可以通过紧跟其后的Value取值来控制是否将训练模型绘制成图,默认是'False',表示不会图。另外一个有用的参数是'kernel_function',如果你对SVM算法比较了解的话应该知道,核函数主要是通过空间转换来将原本线性不可分的数据,转换到另外一个线性可分的空间上,后续我们还会给出具体例子。
下面的代码就可以训练得到一个分类模型:
[plain] view plain copy
>> svmStruct = svmtrain(xdata,group,'ShowPlot',true);
上述代码的执行结果如下图所示(注意因为我们为参数'showplot'赋值为True,所以系统会绘制出图):
下面我们用svmclassify() 来测试一下模型的分类能力:
[plain] view plain copy
<span style="font-size:18px;">>> testdata = [4 1.5;1.8 0.38];
>> species = svmclassify(svmStruct,testdata,'ShowPlot',true)
species =
'versicolor'
'setosa'</span>
如果觉得文字表述的结果不够形象,还可以用图形来表示:
[plain] view plain copy
<span style="font-size:18px;">>> hold on;
>> plot(testdata(:,1),testdata(:,2),'ro','MarkerSize',12);
>> hold off</span>
上述代码的执行结果如图所示(其中被圆周圈起来的就是我们引入的测试数据):
如果数据是线性不可分的,SVM是否能够应对呢?来看下面的例子,首先,我们生成两组数据data1和data2
[plain] view plain copy
>> rng(1); % For reproducibility
r = sqrt(rand(100,1)); % Radius
t = 2*pi*rand(100,1); % Angle
data1 = [r.*cos(t), r.*sin(t)]; % Points
>> r2 = sqrt(3*rand(100,1)+1); % Radius
t2 = 2*pi*rand(100,1); % Angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
data1和data2是线性不可分的。用图形来表示或许更加一目了然,所以我们来绘图:
[plain] view plain copy
>> figure;
plot(data1(:,1),data1(:,2),'r.','MarkerSize',15)
hold on
plot(data2(:,1),data2(:,2),'b.','MarkerSize',15)
ezpolar(@(x)1);ezpolar(@(x)2);
axis equal
hold off
上述代码的执行结果如下:
然后我们把两组数据组织到一起,并加上分类标签‘+1’和‘-1’。
[plain] view plain copy
>> data3 = [data1;data2];
theclass = ones(200,1);
theclass(1:100) = -1;
然后分别用高斯核函数与多项式核函数来进行空间转换,并在此基础上进行基于SVM的分类:
[plain] view plain copy
>> svmModel = svmtrain(data3, theclass, 'kernel_function','rbf','ShowPlot',true);
>> svmModel = svmtrain(data3, theclass, 'kernel_function','polynomial','ShowPlot',true);
下图基于高斯核函数的SVM分类结果:
下图基于多项式核函数的SVM分类结果:
可见原本不可分的数据,现在已经被成功分类了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29