一、线性支持向量机的概念
线性支持向量机是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。对于这样的数据集,类似线性可分支持向量机,通过求解对应的凸二次规划问题,也同样求得分离超平面
以及相应的分类决策函数
二、与线性可分支持向量机的比较
线性支持向量机与线性可分支持向量机最大的不同就是在处理的问题上,线性可分支持向量机处理的是严格线性可分的数据集,而线性支持向量机处理的是线性不可分的数据集,然而,在基本的原理上他们却有着想通之处。这里的线性不可分是指数据集中存在某些点不能满足线性可分支持向量机的约束条件:。
具体来讲,对于特征空间上的训练数据集,且不是线性可分的,即存在某些特异点不满足的约束条件,若将这些特异点去除,那么剩下的数据点是线性可分的,由此可见,线性可分支持向量机是线性支持向量机的特殊情况。为了解决这样的问题,对每个样本点引入一个松弛变量,且,则上述的约束条件被放宽,即:
此时目标函数变为:
其中称为惩罚参数,且。在线性支持向量机中加入了惩罚项,与线性可分支持向量的应间隔最大化相对应,在线性支持向量机中称为软间隔最大化。数据分析师培训
三、线性支持向量机的原理
由上所述,我们得到线性支持向量机的原始问题:
接下来的问题就变成如何求解这样一个最优化问题(称为原始问题)。引入拉格朗日函数:
其中,。
此时,原始问题即变成
利用拉格朗日函数的对偶性,将问题变成一个极大极小优化问题:
首先求解,将拉格朗日函数分别对求偏导,并令其为0:
即为:
将其带入拉格朗日函数,即得:
第二步,求,即求:
由可得,因为在第二步求极大值的过程中,函数只与a有关。
将上述的极大值为题转化为极小值问题:
这就是原始问题的对偶问题。
四、线性支持向量机的过程
1、设置惩罚参数,并求解对偶问题:
假设求得的最优解为;
2、计算原始问题的最优解:
选择中满足的分量,计算:
3、求分离超平面和分类决策函数:
分离超平面为:
分类决策函数为:
五、实验的仿真
1、解决线性可分问题
与博文“简单易学的机器学习算法——线性可分支持向量机”实验一样,其中取中的最大值。
MATLAB代码为
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
y = [1,1,-1];%标签
A = [X,y'];
m = size(A);%得到训练数据的大小
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
axis([0,7,0,7])
hold off
实验结果为:
(线性可分问题的分离超平面)
2、解决线性不可分问题
问题为:
(线性不可分问题)
MATLAB代码:
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
% 导入测试数据
A = load('testSet.txt');
% 处理数据的标签
m = size(A);%得到训练数据的大小
for i = 1:m(1,1)
A(i,m(1,2)) = A(i,m(1,2))*2-1;
end
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
% C = mean(x);
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [-4,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
hold off
实验结果为:
(线性不可分问题的分离超平面)
注:这里的的取值很重要,的取值将决定分类结果的准确性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31