打造精准农业!以物联网、大数据酿造葡萄酒
“啥咪? 计算机马也会选土豆喔?”
耳熟能详的一句广告词,但你知道吗?现在已经不只是计算机会选土豆,而是连土豆本身都会上网的时代了!
当年来到英国时,酒哥的主要目标是攻读通信工程的学位,出发前完全没预料到会在课余时花上三、四年的时间取得WSET Level 4的认证资格。但再怎么不务正业,好歹还是花了四年的时间一圆初衷 – 从这所世界前十的帝国理工拿到了理工博士的学位。因为两个领域的所学都略有小成,目前酒哥正以自己的专业结合对葡萄酒的知识,投入以科技帮助精致农业更上一层楼的领域之中。为了证明四年的研究没有白做,今天酒哥就来跟大家说说,在物联网(Internet of Things, IoT)时代里,大数据如何帮助葡萄酒产业生产出一桶又一桶的醇美佳酿。
精准农业(Precision Agriculture)是什么?
传统农耕是货真价实的"看天吃饭",农夫们凭借着累积下来的经验预测气候的变化,并在施作时做相应的调整。但人定胜天毕竟有其极限,更多时候我们看到的是电视新闻里农人们望着歉收田地时的那令人鼻酸的无奈。尤其近年来极端气候出现的频率越来越频繁,传统的经验法则也逐渐失去了该有的功效,以现代科技来协助耕种已经成了一股不可逆且必要的趋势。
就基础技术而言,精准农业基本上属于网络实体系统(Cyber-Physical System)下的一个分支。大量的物理讯息的透过各式传感器及遥控摄影装置进行收集;这些讯息再利用物联网技术传回云端进行分析;最终再透过物联网技术传回自动化系统,并将这些分析及决策结果反馈回物理世界当中。
(谜之音:酒哥,你还是说中文吧!)
简单来说,这就好比我们在一块农地里安排了无数的家庭小精灵多比,这些多比们会随时回报关于这块农地里的一切数据,空气湿度/土壤酸碱度与含水量,甚至有没有害虫入侵,这些攸关作物生长的讯息搜集后会透过无线网络(没错,现在连在田里都能接Wifi,但不一定有宝可梦就是了…)上传到云端以软件分析,接着农夫们就依据这些分析的结果执行相对应的动作:虫多除虫、土干浇水。
而从宏观的角度,精准农业可再配合先进的气象预测、基于卫星摄影技术所建构的地理信息系统、以及无线遥测监控技术,将"大自然"这个庞大的不确定因素也变得可以掌握,大幅减低了农作物被气候影响收成的风险。在这些信息的加持下,某种程度上人类已经战胜了自然,"看天吃饭"这四个字看起来也不再这么无助了。
这些参数经过分析后除了可以帮助耕作者进行决策之外,也能透过自动化系统,针对实际所需,订制化地执行洒水、施肥、播种等工作。最终在农作物质量/产量/成本之间取得优化的平衡,实现在大规模的农耕环境下达到精耕细作的目标。
重点来了,做为精致农业中的代表性产业,葡萄酒园当仁不让地成为最理想应用场景之一。原因在于葡萄对生长环境的敏感度及要求很高,一公尺高度差造成的温湿度差异都有可能导致葡萄质量上的分别,更别说葡萄园间的空气对流、日照及土壤状况这些具有决定性影响力的因子,这也是为什么很多大师们在介绍酒款时一定要先大概描绘一下这支酒产区的地理及气候环境,绝对不是要骗稿费,而是因为向阳或背光可是会影响到一支酒未来是table wine还是东贝利的分水岭!
▲ 透过无人机自动远程监控的葡萄园
除了栽植外,葡萄酒的酿造及储藏也是技术应用的一环,整合物联网技术的数据收集,并配合数据挖掘(Data Mining)技巧及机器学习(Machine Learning)模型,许多原本未知的潜藏的信息可以被发掘出来。这些信息除了能够作为酒厂优化其设备及生产流程的参考之外,还能在一定程度上协助降低酒厂整体的营运成本,使酒厂可将资金更有效的运用在提升葡萄酒质量及营销上。
▲ 精准农业帮助产业升级的应用流程
看那年年与艺术家合作设计酒标的Chateau Mouton Rothchild,虽然传统上在五大酒庄当中并非顶尖,但近年来价格却有超英赶美的趋势,特别是在2000年时为千禧年所设计的特殊瓶身已经成为各路收藏家心中的梦幻逸品,此即为营销的威力所在。
▲ 五大酒庄之一的Ch?teau Mouton Rothschild
科技与传统的拉锯
曾听酒界的前辈说过,只有小规模生产的酒款,才是真正的好东西,只有规模小,酿造者才能将其所有的时间与精力投注于照顾葡萄园及酿造当中。然而,身为科技人的酒哥对这样的说法则不置可否。比起单一酿造者的经验传承,新兴技术的背后其实都是累积了无数人类智慧的结晶才得以实现。因此,虽然许多人及酒界前辈们大概不认同,但酒哥衷心的认为,年产量上看30-50万瓶的波尔多五大酒庄,及500万瓶的香槟王在维持质量及产量所耗费的总时间及精力,可是比时下流行的膜拜酒(Cult Wine或Garage Wine)来的高多了(毕竟一旦质量砸锅了影响到的可是上百个亿的生意啊)。也因为这样,接纳现代技术并结合传统栽植酿造理念所培育出来的经典酒款,更是令我感到由衷敬佩。
▲年产量7,500瓶的Screaming Eagle以及年产量500,000瓶的Chateau Lafite Rothchild
话虽如此,这就和VinoType一样,青菜萝卜各有所好;无论你喜欢追求小量生产的稀有酒款,还是和酒哥本人一样期待在葡萄酒上看见下个世代的农产工业革命,只要能在品饮葡萄酒这条路上留下属于自己的一条足迹,那便不枉此行了!
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22