优化算法—粒子群算法(PSO)
一、粒子群算法的概述
粒子群算法(PSO)属于群智能算法的一种,是通过模拟鸟群捕食行为设计的。假设区域里就只有一块食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食物源。鸟群在整个搜寻的过程中,通过相互传递各自的信息,让其他的鸟知道自己的位置,通过这样的协作,来判断自己找到的是不是最优解,同时也将最优解的信息传递给整个鸟群,最终,整个鸟群都能聚集在食物源周围,即我们所说的找到了最优解,即问题收敛。
二、粒子群算法的流程
粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置。粒子群算法的思想相对比较简单,主要分为:1、初始化粒子群;2、评价粒子,即计算适应值;3、寻找个体极值;4、寻找全局最优解;5、修改粒子的速度和位置。下面是程序的流程图:
(PSO流程)
下面我们具体解释下流程图里面的每一个步骤:
1、初始化
首先,我们需要设置最大的速度区间,防止超出最大的区间。位置信息即为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置。设置群体规模。
2、个体极值与全局最优解
个体极值为每个粒子找到的历史上最优的位置信息,并从这些个体历史最优解中找到一个全局最优解,并与历史最优解比较,选出最佳的作为当前的历史最优解。
3、更新速度和位置的公式
更新公式为:
其中,称为惯性因子,
称为加速常数,一般取
。
表示区间
上的随机数。
表示第
个变量的个体极值的第d维。
表示全局最优解的第d维。
4、终止条件
有两种终止条件可以选择,一是最大代数:;二是相邻两代之间的偏差在一个指定的范围内即停止。我们在实验中选择第一种。
三、实验
我们选择的测试函数是:Griewank。其基本形式如下:
图像为:
(Griewank函数图像)
在实验中我们选择的维数是20;MATLAB程序代码如下:
主程序:
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
c1=2;%学习因子
c2=2;%学习因子
Dimension=20;
Size=30;
Tmax=500;
Velocity_max=1200;%粒子最大速度
F_n=2;%测试函数名
Fun_Ub=600;%函数上下界
Fun_Lb=-600;
Position=zeros(Dimension,Size);%粒子位置
Velocity=zeros(Dimension,Size);%粒子速度
Vmax(1:Dimension)=Velocity_max;%粒子速度上下界
Vmin(1:Dimension)=-Velocity_max;
Xmax(1:Dimension)=Fun_Ub;%粒子位置上下界,即函数自变量的上下界
Xmin(1:Dimension)=Fun_Lb;
[Position,Velocity]=Initial_position_velocity(Dimension,Size,Xmax,Xmin,Vmax,Vmin);
Pbest_position=Position;%粒子的历史最优位置,初始值为粒子的起始位置,存储每个粒子的历史最优位置
Gbest_position=zeros(Dimension,1);%全局最优的那个粒子所在位置,初始值认为是第1个粒子
for j=1:Size
Pos=Position(:,j);%取第j列,即第j个粒子的位置
fz(j)=Fitness_Function(Pos,F_n,Dimension);%计算第j个粒子的适应值
end 数据分析师培训
[Gbest_Fitness,I]=min(fz);%求出所有适应值中最小的那个适应值,并获得该粒子的位置
Gbest_position=Position(:,I);%取最小适应值的那个粒子的位置,即I列
for itrtn=1:Tmax
time(itrtn)=itrtn;
Weight=1;
r1=rand(1);
r2=rand(1);
for i=1:Size
Velocity(:,i)=Weight*Velocity(:,i)+c1*r1*(Pbest_position(:,i)-Position(:,i))+c2*r2*(Gbest_position-Position(:,i));
end
%限制速度边界
for i=1:Size
for row=1:Dimension
if Velocity(row,i)>Vmax(row)
Veloctity(row,i)=Vmax(row);
elseif Velocity(row,i)<Vmin(row)
Veloctity(row,i)=Vmin(row);
else
end
end
end
Position=Position+Velocity;
%限制位置边界
for i=1:Size
for row=1:Dimension
if Position(row,i)>Xmax(row)
Position(row,i)=Xmax(row);
elseif Position(row,i)<Xmin(row)
Position(row,i)=Xmin(row);
else
end
end
end
for j=1:Size
P_position=Position(:,j)';%取一个粒子的位置
fitness_p(j)=Fitness_Function(P_position,F_n,Dimension);
if fitness_p(j)< fz(j) %粒子的适应值比运动之前的适应值要好,更新原来的适应值
Pbest_position(:,j)=Position(:,j);
fz(j)=fitness_p(j);
end
if fitness_p(j)<Gbest_Fitness
Gbest_Fitness=fitness_p(j);
end
end
[Gbest_Fitness_new,I]=min(fz);%更新后的所有粒子的适应值,取最小的那个,并求出其编号
Best_fitness(itrtn)=Gbest_Fitness_new; %记录每一代的最好适应值
Gbest_position=Pbest_position(:,I);%最好适应值对应的个体所在位置
end
plot(time,Best_fitness);
xlabel('迭代的次数');ylabel('适应度值P_g');
初始化:
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [Position,Velocity] = Initial_position_velocity(Dimension,Size,Xmax,Xmin,Vmax,Vmin)
for i=1:Dimension
Position(i,:)=Xmin(i)+(Xmax(i)-Xmin(i))*rand(1,Size); % 产生合理范围内的随机位置,rand(1,Size)用于产生一行Size个随机数
Velocity(i,:)=Vmin(i)+(Vmax(i)-Vmin(i))*rand(1,Size);
end
end
适应值计算:
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function Fitness=Fitness_Function(Pos,F_n,Dimension)
switch F_n
case 1
Func_Sphere=Pos(:)'*Pos(:);
Fitness=Func_Sphere;
case 2
res1=Pos(:)'*Pos(:)/4000;
res2=1;
for row=1:Dimension
res2=res2*cos(Pos(row)/sqrt(row));
end
Func_Griewank=res1-res2+1;
Fitness=Func_Griewank;
end
最终的收敛曲线:
(收敛曲线)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12