数据分析技术:事后多重比较的方法介绍;了解各种方法的原理才能做到“准确分析”
基础准备
均值比较的假设检验是数据分析最重要的分析内容之一,根据参与比较的样本数量不同,使用的假设检验方法也不同,做个简要的总结:
一个总体均值与一个常数进行比较(Z检验和T检验);
两个总体均值之间的比较(Z检验和T检验);
三个及三个以上总体均值的比较(方差分析);
与Z检验和T检验不同,方差分析的结果只能检验出三个以上的总体均值是完全相同呢?还是不完全相同?注意是不完全相同,至于是哪个或哪些总体均值与其它总体均值不同则是不能获知的。因此方差分析结束以后还需要做事后多重检验,分析出到底是哪个或哪些总体均值与众不同。
今天我们要介绍的是进行事后多重检验的方法介绍。如果对方差分析还不太熟悉的朋友可以点击下面的链接回顾:
数据分析技术:方差分析原理;
数据分析理论:方差分析模型;
很多朋友会有疑问,为什么方差分析一定要进行事后多重比较呢?直接用独立样本T检验进行多次两两比较不是也可以吗?我们可以用一个例子说明这个原因:以方差分析为例,假如有5个样本,如果要进行多次均值的两两比较,那么两两比较的次数多达10次。设每次比较的显著性水平等于0.05,那么10次比较都不犯“弃真”错误的概率为(1-0.05)的十次方,也就是0.60左右,也就是说犯“弃真”错误的概率高达0.40,这远远大于原先设定的显著性水平0.05。不仅如此,随着比较组数的增多,犯“弃真”错误的概率也会越来越大。
应用SPSS进行方差分析时,给分析者提供了很多事后多重检验的方法,如下图所示。这些方法根据多个总体方差是否相等分成了两大类。
事后多重检验的方法很多,但并不是说它们如百花齐放般的衬托了统计学的欣欣向荣,而是说明到目前为止仍然没有统一的解决方法,因此才根据不同的目的和数据情况创造出了很多不同的方法。
两两比较的方法
LSD法:最小显著性差异法(Least Significance Difference),是最简单的比较方法之一。它是t检验的一个简单变形,并未对检验水准做出任何校正,只是在标准误(注意不是标准差)的计算上充分考虑了所有总体水平的样本信息,估计出了一个更为稳健的标准误。因为单次比较的显著性水平a保持不变,所以LSD法是最灵敏的事后多重比较法。
Sidak法:Sidak校正在LSD法上的应用。通过Sidak校正降低每次两两比较的“弃真”错误概率,以使最终整个比较的“弃真”错误概率保持为显著性水平a。这也就是说每次比较的显著性水平a会随着比较次数的增多而减小。显然,Sidak法比LSD法的灵敏度低。每次进行Sidak比较的显著性水平为:
Bonferroni法:与Sidak法类似,它的每一次比较实际上是Bonferroni校正在LSD法上的应用。Bonferroni法修正后每次比较的显著性水平比Sidak法的更小,也就是说Bonferroni法比Sidak法的灵敏度更低。
Scheffe法:Scheffe法的实质是对多个总体均值间的线性组合是否为0进行假设检验。多用在两组样本含量不同的情况。
Dunnett法:常用于多个试验组与一个对照组间的比较。因此在指定Dunnett法时,还应当指定对照组。
以上五种方法的排列顺序是按照灵敏度从高到低排列的,LSD法>Sidak法>Bonferroni法>Scheffe法>Dunnett法。
形成同质亚组的方法
SNK法:全称为Student-Newman-Keuls法。它实质上是根据预先指定的准则将各组均值分为多个亚组,利用Studentized Range分布来进行假设检验,并根据所要检验的均值个数调整总的“弃真”错误概率不超过设定的显著性水平a。
Tukey法:全称为Tukey' s Honestly Significant Difference法。应用这种方法要求各组样本含量相同。它也是利用Studentized Range分布来进行各组均数间的比较,与SNK法不同地是,它控制所有比较中最大的“弃真”错误概率不超过设定的显著性水平a。
Duncan法:其思路与SNK法相类似,只不过检验统计量服从的是Duncan' s Multiple Range分布。
以上8种是常用的事后多重检验方法(各水平样本的方差齐性),剩下的六种方法并不常用,这里就不在介绍。除此之外,在各组样本方差不齐时,SPSS还提供了4种事后多重检验的方法,但从方法的接受程度和结果的稳健性讲,希望大家尽量不要在方差不齐时进行方差分析甚至两两比较,采用变量变换或者非参数检验往往更可靠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31