一、线性回归的概念
对连续型数据做出预测属于回归问题。举个简单的例子:例如我们在知道房屋面积(HouseArea)和卧室的数量(Bedrooms)的情况下要求房屋的价格(Price)。通过一组数据,我们得到了这样的关系:
这样的关系就叫做线性回归方程,其中为回归系数。当我们知道房屋面积以及卧室数量时,就可以求出房屋的价格。当然还有一类是非线性回归。
二、基本线性回归
线性回归的目标是要求出线性回归方程,即求出线性回归方程中的回归系数。我们可以使用平方误差来求线性回归系数。平方误差可以表示为:
可以使用矩阵表示。对W求导,得到。于是令其为0,即得到的估计
三、基本线性回归实验
原始的数据
最佳拟合直线
MATLAB代码
主函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% load Data
A = load('ex0.txt');
X = A(:,1:2);%读取x
Y = A(:,3);
ws = standRegres(X,Y);
%% plot the regression function
x = 0:1;
y = ws(1,:)+ws(2,:)*x;
hold on
xlabel x;
ylabel y;
plot(X(:,2),Y(:,1),'.');
plot(x,y);
hold off
求权重的过程
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ ws ] = standRegres( X, Y )
[m,n] = size(X);
ws = zeros(m,1);
XTX = X'*X;
if det(XTX) == 0
disp('This matrix is singular, cannot do inverse');
end
ws = XTX^(-1) *(X'*Y);
end
四、局部加权线性回归
在线性回归中会出现欠拟合的情况,有些方法可以用来解决这样的问题。局部加权线性回归(LWLR)就是这样的一种方法。局部加权线性回归采用的是给预测点附近的每个点赋予一定的权重,此时的回归系数可以表示为
为给每个点的权重。
LWLR使用核函数来对附近的点赋予更高的权重,常用的有高斯核,对应的权重为
这样的权重矩阵只含对角元素。
五、局部加权线性回归实验
对上组数据做同样的处理:
MATLAB代码
主函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% load Data
A = load('ex0.txt');
X = A(:,1:2);
Y = A(:,3);
[SX,index] = sort(X);%得到排序和索引
%yHat = lwlrTest(SX, X, Y, 1);
%yHat = lwlrTest(SX, X, Y, 0.01);
%yHat = lwlrTest(SX, X, Y, 0.003);
hold on
xlabel x;
ylabel y;
plot(X(:,2),Y(:,1),'.');
plot(SX(:,2),yHat(:,:));
hold off
LWLR
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ output ] = lwlr( testPoint, X, Y, k )
[m,n] = size(X);%得到数据集的大小
weight = zeros(m,m);
for i = 1:m
diff = testPoint - X(i,:);
weight(i,i) = exp(diff * diff'./(-2*k^2));
end
XTX = X'*(weight * X);
if det(XTX) == 0
disp('his matrix is singular, cannot do inverse');
end
ws = XTX^(-1) * (X' * (weight * Y));
output = testPoint * ws;
end
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ y ] = lwlrTest( test, X, Y, k )
[m,n] = size(X);
y = zeros(m,1);
for i = 1:m
y(i,:) = lwlr(test(i,:), X, Y, k);
end
end
当k=1时是欠拟合,当k=0.003时是过拟合,选择合适的很重要。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21