一、推荐系统的概念
推荐系统(Recommendation System, RS),简单来说就是根据用户的日常行为,自动预测用户的喜好,为用户提供更多完善的服务。举个简单的例子,在京东商城,我们浏览一本书之后,系统会为我们推荐购买了这本书的其他用户购买的其他的书:
推荐系统在很多方面都有很好的应用,尤其在现在的个性化方面发挥着重要的作用。
二、推荐系统的分类
推荐系统使用了一系列不同的技术,主要可以分为以下两类:
基于内容(content-based)的推荐。主要依据的是推荐项的性质。
基于协同过滤(collaborative filtering)的推荐。主要依据的是用户或者项之间的相似性。
在协同过滤方法中,我们很显然的会发现,基于协同过滤的推荐系统用可以分为两类:
基于项(item-based)的推荐系统。主要依据的是项与项之间的相似性。
基于用户(user-based)的推荐系统。主要依据的是用户与用户之间的相似性。
三、相似度的度量方法
相似性的度量的方法有很多种,不同的度量方法的应用范围也不一样。相似性度量方法的设计也是机器学习算法设计中很重要的一部分,尤其是对于聚类算法,推荐系统这类算法。
相似性的度量方法必须满足拓扑学中的度量空间的基本条件:
假设d是度量空间上M的度量,其中度量d满足:
非负性:,当且
仅当时取等号;
对称性:;
三角不等性:。
这里主要介绍三种相似性的度量方法:欧式距离、皮尔逊相关系数和余弦相似度。
1、欧式距离
欧式距离是使用较多的相似性的度量方法,在kMeans中就使用到欧式距离作为相似项的发现。
2、皮尔逊相关系数(Pearson Correlation)
在欧氏距离的计算中,不同特征之间的量级对欧氏距离的影响比较大,例如,和
我们就不能很好的利用欧式距离判断和,和之间的相似性的大小。而皮尔逊相似性的度量对量级不敏感:
其中表示向量x和向量y内积,
表示向量x的二范数。
3、余弦相似度(Cosine Similarity)
余弦相似度有着与皮尔逊相似度同样的性质,对量级不敏感,是计算两个向量的夹角。在吴军老师的《数学之美》上,在计算文本相似性的过程中,大量使用了余弦相似性的度量方法。
四、基于相似度的推荐系统
协同过滤是通过将用户和其他用户的数据进行对比来实现推荐的。我们通过一个评分系统对基于协同过滤的推荐系统作阐述。
(不同用户对不同商品的评分)
如图,横轴为每个用户对不同商品的评分,评分的范围为1~5,0表示该用户未对该商品评分。我们以用户Tracy为例,Tracy未对日式炸鸡排和寿司饭评分,我们利用协同过滤推荐系统预测Tracy对该两个商品评分,并依据分数的高低向Tracy推荐商品。
1、计算相似度
在本例中,我们是依据物品的相似度,即计算日式炸鸡排与鳗鱼饭、烤牛肉和手撕猪肉的相似度实现对日式炸鸡排的评分,用同样的方法对寿司饭评分。数据分析师培训
2、排序
排序的目的是实现在日式炸鸡排与寿司饭这两个商品中推荐给用户Tracy。
3、实验结果
(相似度的计算——基于余弦相似度)
(推荐结果)
从推荐结果,我们发现寿司饭的评分更高,首推寿司饭,日式炸鸡排排在寿司饭后面。
4、MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 主函数
% 导入数据
data = [4,4,0,2,2;4,0,0,3,3;4,0,0,1,1;1,1,1,2,0;2,2,2,0,0;1,1,1,0,0;5,5,5,0,0];
% reccomendation
[sortScore, sortIndex] = recommend(data, 3, 'cosSim');
len = size(sortScore);
finalRec = [sortIndex, sortScore];
disp(finalRec);
计算相似度的函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ score ] = evaluate( data, user, simMeas, item )
[m,n] = size(data);
simTotal = 0;
ratSimTotal = 0;
% 寻找用户都评价的商品
% data(user, item)为未评价的商品
for j = 1:n
userRating = data(user, j);%此用户评价的商品
ratedItem = zeros(m,1);
numOfNon = 0;%统计已评价商品的数目
if userRating == 0%只是找到已评分的商品
continue;
end
for i = 1:m
if data(i,item) ~= 0 && data(i,j) ~= 0
ratedItem(i,1) = 1;
numOfNon = numOfNon + 1;
end
end
% 判断有没有都评分的项
if numOfNon == 0
similarity = 0;
else
% 构造向量,便于计算相似性
vectorA = zeros(1,numOfNon);
vectorB = zeros(1,numOfNon);
r = 0;
for i = 1:m
if ratedItem(i,1) == 1
r = r+1;
vectorA(1,r) = data(i, j);
vectorB(1,r) = data(i, item);
end
end
switch simMeas
case {'cosSim'}
similarity = cosSim(vectorA,vectorB);
case {'ecludSim'}
similarity = ecludSim(vectorA,vectorB);
case {'pearsSim'}
similarity = pearsSim(vectorA,vectorB);
end
end
disp(['the ', num2str(item), ' and ', num2str(j), ' similarity is ', num2str(similarity)]);
simTotal = simTotal + similarity;
ratSimTotal = ratSimTotal + similarity * userRating;
end
if simTotal == 0
score = 0;
else
score = ratSimTotal./simTotal;
end
end
推荐函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ sortScore, sortIndex ] = recommend( data, user, simMeas )
% 获取data的大小
[m, n] = size(data);%m为用户,n为商品
if user > m
disp('The user is not in the dataBase');
end
% 寻找用户user未评分的商品
unratedItem = zeros(1,n);
numOfUnrated = 0;
for j = 1:n
if data(user, j) == 0
unratedItem(1,j) = 1;%0表示已经评分,1表示未评分
numOfUnrated = numOfUnrated + 1;
end
end
if numOfUnrated == 0
disp('the user has rated all items');
end
% 对未评分项打分,已达到推荐的作用
itemScore = zeros(numOfUnrated,2);
r = 0;
for j = 1:n
if unratedItem(1,j) == 1%找到未评分项
r = r + 1;
score = evaluate(data, user, simMeas, j);
itemScore(r,1) = j;
itemScore(r,2) = score;
end
end
%排序,按照分数的高低进行推荐
[sortScore, sortIndex_1] = sort(itemScore(:,2),'descend');
[numOfIndex,x] = size(sortIndex_1(:,1));
sortIndex = zeros(numOfIndex,1);
for m = 1:numOfIndex
sortIndex(m,:) = itemScore(sortIndex_1(m,:),1);
end
end
相似度的函数:
欧式距离函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ ecludSimilarity ] = ecludSim( vectorA, vectorB )
ecludSimilarity = 1./(1 + norm(vectorA - vectorB));
end
皮尔逊相关系数函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ pearsSimilarity ] = pearsSim( vectorA, vectorB )
pearsSimilarityMatrix = 0.5 + 0.5 * corrcoef(vectorA, vectorB);
pearsSimilarity = pearsSimilarityMatrix(1,2);
end
余弦相似度函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ cosSimilarity ] = cosSim( vectorA, vectorB )
%注意vectorA和vectorB都是行向量
num = vectorA * vectorB';
denom = norm(vectorA) * norm(vectorB);
cosSimilarity = 0.5 + 0.5 * (num./denom);
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31