简单易学的机器学习算法—马尔可夫链蒙特卡罗方法MCMC
对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里,可以使用马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)方法,其中Metropolis-Hastings采样和Gibbs采样是MCMC中使用较为广泛的两种形式。
MCMC的基础理论为马尔可夫过程,在MCMC算法中,为了在一个指定的分布上采样,根据马尔可夫过程,首先从任一状态出发,模拟马尔可夫过程,不断进行状态转移,最终收敛到平稳分布。
一、马尔可夫链
1、马尔可夫链
设Xt表示随机变量X在离散时间t时刻的取值。若该变量随时间变化的转移概率仅仅依赖于它的当前取值,即
也就是说状态转移的概率只依赖于前一个状态。称这个变量为马尔可夫变量,其中,s0,s1,⋯,si,sj∈Ω为随机变量X可能的状态。这个性质称为马尔可夫性质,具有马尔可夫性质的随机过程称为马尔可夫过程。
马尔可夫链指的是在一段时间内随机变量X的取值序列(X0,X1,⋯,Xm),它们满足如上的马尔可夫性质。
2、转移概率
马尔可夫链是通过对应的转移概率定义的,转移概率指的是随机变量从一个时刻到下一个时刻,从状态si转移到另一个状态sj的概率,即:
记表示随机变量X在时刻t的取值为sk的概率,则随机变量X在时刻t+1的取值为si的概率为:
假设状态的数目为n,则有:
3、马尔可夫链的平稳分布
对于马尔可夫链,需要注意以下的两点:
1、周期性:即经过有限次的状态转移,又回到了自身;
2、不可约:即两个状态之间相互转移;
如果一个马尔可夫过程既没有周期性,又不可约,则称为各态遍历的。
对于一个各态遍历的马尔可夫过程,无论初始值π(0)取何值,随着转移次数的增多,随机变量的取值分布最终都会收敛到唯一的平稳分布π∗,即:
且这个平稳分布π∗满足:
其中,为转移概率矩阵。
二、马尔可夫链蒙特卡罗方法
1、基本思想
对于一个给定的概率分布P(X),若是要得到其样本,通过上述的马尔可夫链的概念,我们可以构造一个转移矩阵为P的马尔可夫链,使得该马尔可夫链的平稳分布为P(X),这样,无论其初始状态为何值,假设记为x0,那么随着马尔科夫过程的转移,得到了一系列的状态值,如:x0,x1,x2,⋯,xn,xn+1,⋯,,如果这个马尔可夫过程在第n步时已经收敛,那么分布P(X)的样本即为xn,xn+1,⋯。
2、细致平稳条件
对于一个各态遍历的马尔可夫过程,若其转移矩阵为P,分布为π(x),若满足:
则π(x)是马尔可夫链的平稳分布,上式称为细致平稳条件。
3、Metropolis采样算法
Metropolis采样算法是最基本的基于MCMC的采样算法。
3.1、Metropolis采样算法的基本原理
假设需要从目标概率密度函数p(θ)中进行采样,同时,θ满足−∞<θ<∞。Metropolis采样算法根据马尔可夫链去生成一个序列:
其中,θ(t)表示的是马尔可夫链在第t代时的状态。
在Metropolis采样算法的过程中,首先初始化状态值θ(1),然后利用一个已知的分布生成一个新的候选状态θ(∗),随后根据一定的概率选择接受这个新值,或者拒绝这个新值,在Metropolis采样算法中,概率为:
这样的过程一直持续到采样过程的收敛,当收敛以后,样本θ(t)即为目标分布p(θ)中的样本。
3.2、Metropolis采样算法的流程
基于以上的分析,可以总结出如下的Metropolis采样算法的流程:
初始化时间t=1
设置u的值,并初始化初始状态θ(t)=u
重复一下的过程:
令t=t+1
从已知分布中生成一个候选状态θ(∗)
计算接受的概率:
从均匀分布Uniform(0,1)生成一个随机值a
如果a⩽α,接受新生成的值:θ(t)=θ(∗);否则:θ(t)=θ(t−1)
直到t=T
3.3、Metropolis算法的解释
要证明Metropolis采样算法的正确性,最重要的是要证明构造的马尔可夫过程满足如上的细致平稳条件,即:
对于上面所述的过程,分布为p(θ),从状态i转移到状态j的转移概率为:
其中,Qi,j为上述已知的分布。
对于选择该已知的分布,在Metropolis采样算法中,要求该已知的分布必须是对称的,即Qi,j=Qj,i,即
常用的符合对称的分布主要有:正态分布,柯西分布以及均匀分布等。
接下来,需要证明在Metropolis采样算法中构造的马尔可夫链满足细致平稳条件。
因此,通过以上的方法构造出来的马尔可夫链是满足细致平稳条件的。
3.4、实验
假设需要从柯西分布中采样数据,我们利用Metropolis采样算法来生成样本,其中,柯西分布的概率密度函数为:
那么,根据上述的Metropolis采样算法的流程,接受概率α的值为:
代码如下:
'''
Date:20160629
@author: zhaozhiyong
'''
import random
from scipy.stats import norm
import matplotlib.pyplot as plt
def cauchy(theta):
y = 1.0 / (1.0 + theta ** 2)
return y
T = 5000
sigma = 1
thetamin = -30
thetamax = 30
theta = [0.0] * (T+1)
theta[0] = random.uniform(thetamin, thetamax)
t = 0
while t < T:
t = t + 1
theta_star = norm.rvs(loc=theta[t - 1], scale=sigma, size=1, random_state=None)
#print theta_star
alpha = min(1, (cauchy(theta_star[0]) / cauchy(theta[t - 1])))
u = random.uniform(0, 1)
if u <= alpha:
theta[t] = theta_star[0]
else:
theta[t] = theta[t - 1]
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
plt.sca(ax1)
plt.ylim(thetamin, thetamax)
plt.plot(range(T+1), theta, 'g-')
plt.sca(ax2)
num_bins = 50
plt.hist(theta, num_bins, normed=1, facecolor='red', alpha=0.5)
plt.show()数据分析师培训
实验的结果:
对于Metropolis采样算法,其要求选定的分布必须是对称的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12