
简单易学的机器学习算法—马尔可夫链蒙特卡罗方法MCMC
对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里,可以使用马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)方法,其中Metropolis-Hastings采样和Gibbs采样是MCMC中使用较为广泛的两种形式。
MCMC的基础理论为马尔可夫过程,在MCMC算法中,为了在一个指定的分布上采样,根据马尔可夫过程,首先从任一状态出发,模拟马尔可夫过程,不断进行状态转移,最终收敛到平稳分布。
一、马尔可夫链
1、马尔可夫链
设Xt表示随机变量X在离散时间t时刻的取值。若该变量随时间变化的转移概率仅仅依赖于它的当前取值,即
也就是说状态转移的概率只依赖于前一个状态。称这个变量为马尔可夫变量,其中,s0,s1,⋯,si,sj∈Ω为随机变量X可能的状态。这个性质称为马尔可夫性质,具有马尔可夫性质的随机过程称为马尔可夫过程。
马尔可夫链指的是在一段时间内随机变量X的取值序列(X0,X1,⋯,Xm),它们满足如上的马尔可夫性质。
2、转移概率
马尔可夫链是通过对应的转移概率定义的,转移概率指的是随机变量从一个时刻到下一个时刻,从状态si转移到另一个状态sj的概率,即:
记表示随机变量X在时刻t的取值为sk的概率,则随机变量X在时刻t+1的取值为si的概率为:
假设状态的数目为n,则有:
3、马尔可夫链的平稳分布
对于马尔可夫链,需要注意以下的两点:
1、周期性:即经过有限次的状态转移,又回到了自身;
2、不可约:即两个状态之间相互转移;
如果一个马尔可夫过程既没有周期性,又不可约,则称为各态遍历的。
对于一个各态遍历的马尔可夫过程,无论初始值π(0)取何值,随着转移次数的增多,随机变量的取值分布最终都会收敛到唯一的平稳分布π∗,即:
且这个平稳分布π∗满足:
其中,为转移概率矩阵。
二、马尔可夫链蒙特卡罗方法
1、基本思想
对于一个给定的概率分布P(X),若是要得到其样本,通过上述的马尔可夫链的概念,我们可以构造一个转移矩阵为P的马尔可夫链,使得该马尔可夫链的平稳分布为P(X),这样,无论其初始状态为何值,假设记为x0,那么随着马尔科夫过程的转移,得到了一系列的状态值,如:x0,x1,x2,⋯,xn,xn+1,⋯,,如果这个马尔可夫过程在第n步时已经收敛,那么分布P(X)的样本即为xn,xn+1,⋯。
2、细致平稳条件
对于一个各态遍历的马尔可夫过程,若其转移矩阵为P,分布为π(x),若满足:
则π(x)是马尔可夫链的平稳分布,上式称为细致平稳条件。
3、Metropolis采样算法
Metropolis采样算法是最基本的基于MCMC的采样算法。
3.1、Metropolis采样算法的基本原理
假设需要从目标概率密度函数p(θ)中进行采样,同时,θ满足−∞<θ<∞。Metropolis采样算法根据马尔可夫链去生成一个序列:
其中,θ(t)表示的是马尔可夫链在第t代时的状态。
在Metropolis采样算法的过程中,首先初始化状态值θ(1),然后利用一个已知的分布生成一个新的候选状态θ(∗),随后根据一定的概率选择接受这个新值,或者拒绝这个新值,在Metropolis采样算法中,概率为:
这样的过程一直持续到采样过程的收敛,当收敛以后,样本θ(t)即为目标分布p(θ)中的样本。
3.2、Metropolis采样算法的流程
基于以上的分析,可以总结出如下的Metropolis采样算法的流程:
初始化时间t=1
设置u的值,并初始化初始状态θ(t)=u
重复一下的过程:
令t=t+1
从已知分布中生成一个候选状态θ(∗)
计算接受的概率:
从均匀分布Uniform(0,1)生成一个随机值a
如果a⩽α,接受新生成的值:θ(t)=θ(∗);否则:θ(t)=θ(t−1)
直到t=T
3.3、Metropolis算法的解释
要证明Metropolis采样算法的正确性,最重要的是要证明构造的马尔可夫过程满足如上的细致平稳条件,即:
对于上面所述的过程,分布为p(θ),从状态i转移到状态j的转移概率为:
其中,Qi,j为上述已知的分布。
对于选择该已知的分布,在Metropolis采样算法中,要求该已知的分布必须是对称的,即Qi,j=Qj,i,即
常用的符合对称的分布主要有:正态分布,柯西分布以及均匀分布等。
接下来,需要证明在Metropolis采样算法中构造的马尔可夫链满足细致平稳条件。
因此,通过以上的方法构造出来的马尔可夫链是满足细致平稳条件的。
3.4、实验
假设需要从柯西分布中采样数据,我们利用Metropolis采样算法来生成样本,其中,柯西分布的概率密度函数为:
那么,根据上述的Metropolis采样算法的流程,接受概率α的值为:
代码如下:
'''
Date:20160629
@author: zhaozhiyong
'''
import random
from scipy.stats import norm
import matplotlib.pyplot as plt
def cauchy(theta):
y = 1.0 / (1.0 + theta ** 2)
return y
T = 5000
sigma = 1
thetamin = -30
thetamax = 30
theta = [0.0] * (T+1)
theta[0] = random.uniform(thetamin, thetamax)
t = 0
while t < T:
t = t + 1
theta_star = norm.rvs(loc=theta[t - 1], scale=sigma, size=1, random_state=None)
#print theta_star
alpha = min(1, (cauchy(theta_star[0]) / cauchy(theta[t - 1])))
u = random.uniform(0, 1)
if u <= alpha:
theta[t] = theta_star[0]
else:
theta[t] = theta[t - 1]
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
plt.sca(ax1)
plt.ylim(thetamin, thetamax)
plt.plot(range(T+1), theta, 'g-')
plt.sca(ax2)
num_bins = 50
plt.hist(theta, num_bins, normed=1, facecolor='red', alpha=0.5)
plt.show()数据分析师培训
实验的结果:
对于Metropolis采样算法,其要求选定的分布必须是对称的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08