大数据谁玩得溜?博鳌论坛上的大咖是这么说的
又是一年博鳌聚焦全球目光之时,众多商界学界大佬悉数登场,这一次他们把注意力投向了数据的价值这个属于移动互联网时代的课题。
今年初,工信部编制并正式印发了《大数据产业发展规划(2016-2020年)》,目标到2020年,大数据相关产品和服务业务收入突破1万亿元,年均复合增长率保持30%左右。数据是国家基础性战略资源,推动大数据应用,加快传统产业数字化、智能化,做大做强数字经济,将为我国经济转型发展提供新动力。
数据的价值和应用前景毋庸置疑。在博鳌分论坛上,现场众多企业领袖表示,在大数据的应用模式上,基于用户行为分析、行为理解、行为预测的客户深度洞察,将数据封装为服务,形成对外开放、可商业化的核心能力,将带来商业模式的巨大创新。
新变革:为消费金融打开“数控”大门
大数据的普及需要创新技术的推动,如何把海量数据赋予使用价值,落实到应用场景,充分发挥大数据分析的价值是论坛的焦点。
腾云天下CEO崔晓波认为,数据的价值是能够变成企业决策的艺术。他举了一个案例,2013年他在为某股份制银行的用户做行为分析时,发现这个银行的信用卡高端客户游戏属性很重,便和休闲游戏的公司合作进行联合营销,用积分兑换游戏虚拟币,后来发现用户转化率高得惊人。这样的尝试在“大数据时代”来临之前,是没有人会想到的。
“大数据”并不是竞争力,“大数据的有效应用”才是。尤其是在中国消费升级的大潮中,随着消费金融的井喷式增长,如何利用大数据人工智能技术对消费场景、业务渠道、客户群体和风控等进行综合标准的把控,显得尤为重要。
作为中国消费金融的领跑者,平安普惠一直在积极探索大数据在其普惠业务中的应用。平安普惠副总裁兼首席市场官徐汉华分享了企业的实践经验,平安普惠依托自身在消费金融及小微企业金融服务领域累积的丰富经验,借鉴国际消费信贷行业的领先技术,凭借平安集团及第三方平台的大数据智能运用,实现无纸化全线上审批流程,并且利用数据建模、心理测量、人脸识别、微表情、时空地图等反欺诈技术为客户量身绘制信用画像,让更多人更快、更好、更方便地获得金融服务。
最新公布的中国平安集团年报显示,2016年平安普惠的新增贷款量达1,729.19亿元,同比增长257.7%,期末管理贷款余额1,466.40亿元。自开展业务以来,累计借款人总数达到377万,累计贷款量达2,719.97亿元,其中无抵押贷款量1,753.64亿元,有抵押贷款量966.33亿元,信贷损失率控制在低位的单位数。
数据价值已经越来越受重视,特别是在金融企业业务转型时期,基于数据的业务及内部管理优化使得金融领域的大数据应用市场规模在未来几年将以高于整体水平的速度增长。
新价值:破局智能风控,是企业的命门,也是社会责任
我国市场规模大,消费需求旺盛,未来越来越多的数据将被记录和整理,用户的行为信息日益丰富和完善,预测分析必定会成为大数据时代的关键技术。
“数据帮助我们更快地发现现象背后的洞察,可以让我们做更多有价值的事情。”微软全球资深副总裁、微软亚太研发集团主席、微软亚洲研究院院长洪小文说。
在我国,互联网金融行业整体环境和风险水平逐渐趋好,但行业风险仍需防范。而准确的预测分析恰恰能帮助金融机构降低因欺诈、信用违约风险导致的坏账风险,达到有效的“大数据风控”。
利用大数据人工智能技术,用海量冗杂的基础数据建立底层模型,从用户个人的消费和信贷行为中衍生出复杂的变量,最终塑造出高度精细化的风险控制模型,用以评估授信额度和还款能力,合理放贷,规避金融风险,从而促进行业良性发展。由此,数据的新价值被释放。
徐汉华坦言,在海量数据里甄别有效的信息,洞察数据背后的逻辑,采取相应风控手段是对客户和企业负责的一种体现。对于客户,匹配还款能力的授信额度才能避免征信受损,真正给客户带来金融的便利。而对于企业,风控是这个行业赖以生存的根本,只有把控好信贷损失率,才能保证企业持续发展,构建更好的信用环境。
大数据协防金融风险,推动行业的可持续发展,帮助用户理性地选择贷款产品,培养健康的消费金融意识,或为我国金融系统乃至全社会信用体系的建设,提供有益参考。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20