
一、分类算法中的损失函数
在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式:
其中,L(mi(w))为损失项,R(w)为正则项。mi的具体形式如下:
对于损失项,主要的形式有:
0-1损失
Log损失
Hinge损失
指数损失
感知损失
1、0-1损失函数
在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值fw(x(i))与真实值y(i)的符号是否相同,0-1损失的具体形式如下:
以上的函数等价于下述的函数:
0-1损失并不依赖m值的大小,只取决于m的正负号。0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。
Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下:
运用Log损失的典型分类器是Logistic回归算法。
对于Logistic回归算法,分类器可以表示为:
为了求解其中的参数w,通常使用极大似然估计的方法,具体的过程如下:
1、似然函数
其中,
2、log似然
3、需要求解的是使得log似然取得最大值的w。将其改变为最小值,可以得到如下的形式:
由于Log损失的具体形式为:
Logistic回归与Log损失具有相同的形式,故两者是等价的。Log损失与0-1损失的关系可见下图。
Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下:
运用Hinge损失的典型分类器是SVM算法。
对于软间隔支持向量机,允许在间隔的计算中出现少许的误差,其优化的目标为:
约束条件为:
对于Hinge损失:
优化的目标是要求:
在上述的函数中引入截距γ,即:
并在上述的最优化问题中增加L2正则,即变成:
至此,令下面的不等式成立:
约束条件为
则Hinge最小化问题变成:
约束条件为:
这与软间隔的SVM是一致的,说明软间隔SVM是在Hinge损失的基础上增加了L2正则。
指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下:
运用指数损失的典型分类器是AdaBoost算法。
AdaBoost算法是对每一个弱分类器以及每一个样本都分配了权重,对于弱分类器φj的权重为:
其中,表示的是误分类率。对于每一个样本的权重为:
最终通过对所有分类器加权得到最终的输出。
对于指数损失函数:
可以得到需要优化的损失函数:
假设f~表示已经学习好的函数,则有:
而:
通过最小化φ,可以得到:
将其代入上式,进而对θ求最优解,得:
其中,
可以发现,其与AdaBoost是等价的。
5、感知损失
5.1、感知损失
感知损失是Hinge损失的一个变种,感知损失的具体形式如下:
运用感知损失的典型分类器是感知机算法。
感知机算法只需要对每个样本判断其是否分类正确,只记录分类错误的样本,其损失函数为:
对于感知损失:
优化的目标为:
在上述的函数中引入截距b,即:
上述的形式转变为:
对于max函数中的内容,可知:
对于错误的样本,有:
类似于Hinge损失,令下式成立:
约束条件为:
则感知损失变成:
即为:
Hinge损失对于判定边界附近的点的惩罚力度较高,而感知损失只要样本的类别判定正确即可,而不需要其离判定边界的距离,这样的变化使得其比Hinge损失简单,但是泛化能力没有Hinge损失强。数据分析师培训
import matplotlib.pyplot as plt
import numpy as np
xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-', label="Hinge loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-', label="Log loss")
plt.plot(xx, np.exp(-xx), 'c-', label="Exponential loss")
plt.plot(xx, -np.minimum(xx, 0), 'm-', label="Perceptron loss")
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y, f(x))$")
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26