【新手必备】SAS常用函数整理
本文根据网络资源对SAS的常用函数进行了整理。主要内容包括:
1. 数学函数
2. 数组函数
3. 字符函数
4. 日期和时间函数
5. 分布密度函数,分布函数
6. 分位数函数
7. 随机数函数
8. 样本统计函数
一、数学函数
1.1 ABS(x) 求x的绝对值。
1.2 MAX(x1,x2,…,xn) 求所有自变量中的最大值。
1.3 MIN(x1,x2,…,xn) 求所有自变量中的最小值。
1.4 MOD(x,y) 求x除以y的余数。
1.5 SQRT(x) 求x的平方根。
1.6 ROUND(x,eps) 求x按照eps指定的精度四舍五入后的结果
例:ROUND(5654.5654,0.01) =5654.57
ROUND(5654.5654,10)=5650
1.7 CEIL(x) 求大于等于x的最小整数。
1.8 FLOOR(x) 求小于等于x的最大整数。
1.9 INT(x) 取整数部分(x扔掉小数部分后的结果)。
1.10 FUZZ(x) 当x与其四舍五入整数值相差小于1E-12时取四舍五入。
1.11 LOG(x) 求x的自然对数。
1.12 LOG10(x) 求x的常用对数。
1.13 EXP(x) 指数函数 。
1.14SIN(x), COS(x), TAN(x) 求x的正弦、余弦、正切函数。
1.15 ARSIN(y) 计算函数y=sin(x)在区间的反函数,y取[-1,1]间值。
1.16 ARCOS(y) 计算函数y=cos(x)在的反函数,y取[-1,1]间值。
1.17 ATAN(y) 计算函数y=tan(x)在 的反函数,y取间值。
1.18 SINH(x), COSH(x), TANH(x) 双曲正弦、余弦、正切 。
1.19 ERF(x) 误差函数。
1.20 GAMMA(x) 伽玛函数 。
1.21 SIGN(x)符号函数。
二、数组函数
2.1 DIM(x) 求数组x第一维的元素的个数。
2.2 DIM k(x) 求数组x第k维的元素的个数。
2.3 LBOUND(x) 求数组x第一维的下界。
2.4 HBOUND(x) 求数组x第一维的上界。
2.5 LBOUND k(x) 求数组x第 k维的下界。
2.6 HBOUND k(x) 求数组x第 k维的上界。
三、字符函数
3.1 TRIM(s) 返回去掉字符串s的尾随空格的结果。
3.2 UPCASE(s) 把字符串s中所有小写字母转换为大写字母后的结果。
3.3 LOWCASE(s) 把字符串s中所有大写字母转换为小写字母后的结果。
3.4 INDEX(s,s1) 查找s1在s中出现的位置。找不到时返回0。
3.5 RANK(s) 字符s的ASCII码值。
3.6 BYTE(n) 第n个ASCII码值的对应字符。
3.7 REPEAT(s,n) 字符表达式s重复n次。
3.8 SUBSTR(s,p,n) 从字符串s中的第p个字符开始抽取n个字符长的子串
3.9 TRANWRD(s,s1,s2) 从字符串s中把所有字符串s1替换成字符串s2后的结果。
四、日期和时间函数
4.1 MDY(m,d,yr) 生成yr年m月d日的SAS日期值
4.2 YEAR(date) 由SAS日期值date得到年
4.3 MONTH(date) 由SAS日期值date得到月
4.4 DAY(date) 由SAS日期值date得到日
4.5 WEEKDAY(date) 由SAS日期值date得到星期几
4.6 QTR(date) 由SAS日期值date得到季度值
4.7 HMS(h,m,s) 由小时h、分钟m、秒s生成SAS时间值
4.8 DHMS(d,h,m,s) 由SAS日期值d、小时h、分钟m、秒s生成SAS日期时间值
4.9 DATEPART(dt) 求SAS日期时间值dt的日期部分
4.10 INTNX(interval,from,n) 计算从from开始经过n个interval间隔后的SAS日期。
其中interval 可以取'YEAR'、'QTR'、'MONTH'、'WEEK'、'DAY'等。
例:INTNX('MONTH', '16Dec1997'd, 3)=1998年3月1日。
4.11 INTCK(interval,from,to) 计算从日期from到日期to中间经过的interval间隔的个数,其中interval取'MONTH'等。
例:INTCK('YEAR', '31Dec1996'd, '1Jan1998'd)=2
函数计算1996年12 月31日到1998年1月1日经过的年间隔的个数,结果得2,尽管这两个日期之间实际只隔1年。
五、分布密度函数、分布函数
作为一个统计计算语言,SAS提供了多种概率分布的有关函数。分布密度、概率、累积分布函数等可以通过几种统一的格式调用,格式为 :
分布函数值 = CDF(' 分布', x <, 参数表>);
密度值 = PDF(' 分布', x <, 参数表>);
概率值 = PMF(' 分布', x <, 参数表>);
对数密度值 = LOGPDF(' 分布', x <, 参数表>);
对数概率值 = LOGPMF(' 分布', x <, 参数表>);
CDF计算由'分布'指定的分布的分布函数, PDF计算分布密度函数值,PMF计算离散分布的分布概率,LOGPDF为PDF的自然对数,LOGPMF为PMF的自然对数。函数在自变量 x处计算,<, 参数表>表示可选的参数表。
分布类型取值可以为: BERNOULLI, BETA, BINOMIAL, CAUCHY, CHISQUARED, EXPONENTIAL, F, GAMMA, GEOMETRIC, HYPERGEOMETRIC, LAPLACE, LOGISTIC, LOGNORMAL, NEGBINOMIAL, NORMAL 或 GAUSSIAN, PARETO, POISSON, T, UNIFORM, WALD 或 IGAUSS, and WEIBULL。可以只写前四个字母。
例:PDF('NORMAL', 1.96)计算标准正态分布在1.96处的密度值(0.05844),CDF('NORMAL', 1.96)计算标准正态分布在1.96处的分布函数值(0.975)。PMF对连续型分布即PDF。
除了用上述统一的格式调用外,SAS还单独提供了常用的分布的密度、分布函数。
5.1 PROBNORM(x) 标准正态分布函数
5.2 PROBT(x,df<,nc>) 自由度为df的t分布函数。可选参数nc为非中心参数。
5.3 PROBCHI(x,df<,nc>) 自由度为df的卡方分布函数。可选参数nc为非中心参数。
5.4 PROBF(x,ndf,ddf<,nc>) F(ndf,ddf)分布的分布函数。可选参数nc为非中心参数。
5.5 PROBBNML(p,n,m) 设随机变量Y服从二项分布B(n,p),此函数计算P(Y m)。
5.6 POISSON((lambda,n) 参数为lambda的Poisson分布Y n的概率。
5.7 PROBNEGB(p,n,m) 参数为(n,p)的负二项分布Y m的概率。
5.8 PROBHYPR(N,K,n,x<,r>) 超几何分布的分布函数。
5.9 PROBBETA(x,a,b) 参数为(a,b)的Beta分布的分布函数。
5.10 PROBGAM(x,a) 参数为a的Gamma分布的分布函数。
5.11 PROBMC 计算多组均值的多重比较检验的概率值和临界值。
5.12 PROBBNRM(x,y,r) 标准二元正态分布的分布函数,r为相关系数。
六、分位数函数
分位数函数是概率分布函数的反函数。其自变量在0到1之间取值。分位数函数计算的是分布的左侧分位数。SAS提供了六种常见连续型分布的分位数函数:
6.1 PROBIT(p) 标准正态分布左侧p分位数。结果在-5到5之间。
6.2 TINV(p, df <,nc>) 自由度为df的t分布的左侧p分位数。可选参数nc为非中心参数。
6.3 CINV(p,df<,nc>) 自由度为df的卡方分布的左侧p分位数。可选参数nc为非中心参数。
6.4 FINV(p,ndf,ddf<,nc>) F(ndf,ddf)分布的左侧p分位数。可选参数nc为非中心参数。
6.5 GAMINV(p,a) 参数为a的伽马分布的左侧p分位数。
6.6 BETAINV(p,a,b) 参数为(a,b)的贝塔分布的左侧p分位数。
七、随机数函数
7.1 均匀分布随机数
有两个均匀分布随机数函数:UNIFORM(seed),seed必须是常数,为0,或5位、6位、7位的奇数。RANUNI(seed),seed为小于2**31-1的任意常数。在同一个数据步中对同一个随机数函数的多次调用将得到不同的结果,但不同数据步中从同一种子出发将得到相同的随机数序列。随机数种子如果取0或者负数则种子采用系统日期时间。
7.2 正态分布随机数
有两种:
(1) NORMAL(seed),seed为0,或5位、6位、7位的奇数。
(2) RANNOR(seed),seed为任意数值常数。
7.3 指数分布随机数
RANEXP(seed),seed为任意数值,产生参数为1的指数分布的随机数。
参数为lambda的指数分布可以用RANEXP(seed)/lambda得到。
7.4 伽马分布随机数
RANGAM(seed, alpha),seed为任意数值常数,alpha>0,得到参数为alpha的伽马分布。设X=RANGAM(seed, alpha),则Y=beta*X是形状参数为alpha,尺度参数为beta的GAMMA分布随机数。如果alpha是整数,则Y=2*X是自由度为 2*alpha的卡方分布随机数。
如果alpha是正整数,则Y=beta*X是Erlang分布随机数,为alpha个独立的均值为beta的指数分布变量的和。 如果Y1=RANGAM(seed,alpha),Y2=RANGAM(seed,beta),在Y=Y1/(Y1+Y2)是参数为(alpha,beta )的贝塔分布随机数。
7.5 三角分布随机数
RANTRI(seed,h),seed为任意数值常数,0<h<1。此分布在0到1取值,密度在0到h 之间为2x/h,在h到1之间为2(1-x)/(1-h)。
7.6 柯西分布随机数
RANCAU(seed),seed为任意数值常数。产生位置参数为0,尺度参数为1的标准柯西分布随机数。Y=alpha+beta*RANCAU(seed)为位置参数为alpha,尺度参数为beta的一般柯西分布随机数。
7.7 二项分布随机数
RANBIN(seed,n,p)产生参数为(n,p)的二项分布随机数,seed为任意数值。
7.8 泊松分布随机数
RANPOI(seed,lambda)产生参数为lambda>0的泊松分布随机数,seed为任意数值。
7.9 一般离散分布随机数
RANTBL(seed, p1, …, pn)生成取1,2,…,n的概率分别为p1,…,pn的离散分布随机数。
八、样本统计函数
样本统计函数把输入的自变量作为一组样本,计算样本统计量。其调用格式为“函数名(自变量1,自变量2,…,自变量n)”或者“函数名(OF 变量名列表)”。比如SUM是求和函数,如果要求x1,x2,x3的和,可以用SUM(x1,x2,x3),也可以用SUM(OF x1-x3)。这些样本统计函数只对自变量中的非缺失值进行计算,比如求平均时把缺失值不计入内。 数据分析师培训
8.1 MEAN 均值
8.2 MAX 最大值
8.3 MIN 最小值
8.4 N 非缺失数据的个数
8.5 NMISS 缺失数值的个数。
8.6 SUM 求和
8.7 VAR 方差
8.8 STD 标准差
8.9 STDERR 均值估计的标准误差,用STD/SQRT(N)计算。
8.10 CV 变异系数
8.11 RANGE 极差
8.12 CSS 离差平方和
8.13 USS 平方和
8.14 SKEWNESS 偏度
8.15 KURTOSIS 峰度
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20