【新手必备】SAS常用函数整理
本文根据网络资源对SAS的常用函数进行了整理。主要内容包括:
1. 数学函数
2. 数组函数
3. 字符函数
4. 日期和时间函数
5. 分布密度函数,分布函数
6. 分位数函数
7. 随机数函数
8. 样本统计函数
一、数学函数
1.1 ABS(x) 求x的绝对值。
1.2 MAX(x1,x2,…,xn) 求所有自变量中的最大值。
1.3 MIN(x1,x2,…,xn) 求所有自变量中的最小值。
1.4 MOD(x,y) 求x除以y的余数。
1.5 SQRT(x) 求x的平方根。
1.6 ROUND(x,eps) 求x按照eps指定的精度四舍五入后的结果
例:ROUND(5654.5654,0.01) =5654.57
ROUND(5654.5654,10)=5650
1.7 CEIL(x) 求大于等于x的最小整数。
1.8 FLOOR(x) 求小于等于x的最大整数。
1.9 INT(x) 取整数部分(x扔掉小数部分后的结果)。
1.10 FUZZ(x) 当x与其四舍五入整数值相差小于1E-12时取四舍五入。
1.11 LOG(x) 求x的自然对数。
1.12 LOG10(x) 求x的常用对数。
1.13 EXP(x) 指数函数 。
1.14SIN(x), COS(x), TAN(x) 求x的正弦、余弦、正切函数。
1.15 ARSIN(y) 计算函数y=sin(x)在区间的反函数,y取[-1,1]间值。
1.16 ARCOS(y) 计算函数y=cos(x)在的反函数,y取[-1,1]间值。
1.17 ATAN(y) 计算函数y=tan(x)在 的反函数,y取间值。
1.18 SINH(x), COSH(x), TANH(x) 双曲正弦、余弦、正切 。
1.19 ERF(x) 误差函数。
1.20 GAMMA(x) 伽玛函数 。
1.21 SIGN(x)符号函数。
二、数组函数
2.1 DIM(x) 求数组x第一维的元素的个数。
2.2 DIM k(x) 求数组x第k维的元素的个数。
2.3 LBOUND(x) 求数组x第一维的下界。
2.4 HBOUND(x) 求数组x第一维的上界。
2.5 LBOUND k(x) 求数组x第 k维的下界。
2.6 HBOUND k(x) 求数组x第 k维的上界。
三、字符函数
3.1 TRIM(s) 返回去掉字符串s的尾随空格的结果。
3.2 UPCASE(s) 把字符串s中所有小写字母转换为大写字母后的结果。
3.3 LOWCASE(s) 把字符串s中所有大写字母转换为小写字母后的结果。
3.4 INDEX(s,s1) 查找s1在s中出现的位置。找不到时返回0。
3.5 RANK(s) 字符s的ASCII码值。
3.6 BYTE(n) 第n个ASCII码值的对应字符。
3.7 REPEAT(s,n) 字符表达式s重复n次。
3.8 SUBSTR(s,p,n) 从字符串s中的第p个字符开始抽取n个字符长的子串
3.9 TRANWRD(s,s1,s2) 从字符串s中把所有字符串s1替换成字符串s2后的结果。
四、日期和时间函数
4.1 MDY(m,d,yr) 生成yr年m月d日的SAS日期值
4.2 YEAR(date) 由SAS日期值date得到年
4.3 MONTH(date) 由SAS日期值date得到月
4.4 DAY(date) 由SAS日期值date得到日
4.5 WEEKDAY(date) 由SAS日期值date得到星期几
4.6 QTR(date) 由SAS日期值date得到季度值
4.7 HMS(h,m,s) 由小时h、分钟m、秒s生成SAS时间值
4.8 DHMS(d,h,m,s) 由SAS日期值d、小时h、分钟m、秒s生成SAS日期时间值
4.9 DATEPART(dt) 求SAS日期时间值dt的日期部分
4.10 INTNX(interval,from,n) 计算从from开始经过n个interval间隔后的SAS日期。
其中interval 可以取'YEAR'、'QTR'、'MONTH'、'WEEK'、'DAY'等。
例:INTNX('MONTH', '16Dec1997'd, 3)=1998年3月1日。
4.11 INTCK(interval,from,to) 计算从日期from到日期to中间经过的interval间隔的个数,其中interval取'MONTH'等。
例:INTCK('YEAR', '31Dec1996'd, '1Jan1998'd)=2
函数计算1996年12 月31日到1998年1月1日经过的年间隔的个数,结果得2,尽管这两个日期之间实际只隔1年。
五、分布密度函数、分布函数
作为一个统计计算语言,SAS提供了多种概率分布的有关函数。分布密度、概率、累积分布函数等可以通过几种统一的格式调用,格式为 :
分布函数值 = CDF(' 分布', x <, 参数表>);
密度值 = PDF(' 分布', x <, 参数表>);
概率值 = PMF(' 分布', x <, 参数表>);
对数密度值 = LOGPDF(' 分布', x <, 参数表>);
对数概率值 = LOGPMF(' 分布', x <, 参数表>);
CDF计算由'分布'指定的分布的分布函数, PDF计算分布密度函数值,PMF计算离散分布的分布概率,LOGPDF为PDF的自然对数,LOGPMF为PMF的自然对数。函数在自变量 x处计算,<, 参数表>表示可选的参数表。
分布类型取值可以为: BERNOULLI, BETA, BINOMIAL, CAUCHY, CHISQUARED, EXPONENTIAL, F, GAMMA, GEOMETRIC, HYPERGEOMETRIC, LAPLACE, LOGISTIC, LOGNORMAL, NEGBINOMIAL, NORMAL 或 GAUSSIAN, PARETO, POISSON, T, UNIFORM, WALD 或 IGAUSS, and WEIBULL。可以只写前四个字母。
例:PDF('NORMAL', 1.96)计算标准正态分布在1.96处的密度值(0.05844),CDF('NORMAL', 1.96)计算标准正态分布在1.96处的分布函数值(0.975)。PMF对连续型分布即PDF。
除了用上述统一的格式调用外,SAS还单独提供了常用的分布的密度、分布函数。
5.1 PROBNORM(x) 标准正态分布函数
5.2 PROBT(x,df<,nc>) 自由度为df的t分布函数。可选参数nc为非中心参数。
5.3 PROBCHI(x,df<,nc>) 自由度为df的卡方分布函数。可选参数nc为非中心参数。
5.4 PROBF(x,ndf,ddf<,nc>) F(ndf,ddf)分布的分布函数。可选参数nc为非中心参数。
5.5 PROBBNML(p,n,m) 设随机变量Y服从二项分布B(n,p),此函数计算P(Y m)。
5.6 POISSON((lambda,n) 参数为lambda的Poisson分布Y n的概率。
5.7 PROBNEGB(p,n,m) 参数为(n,p)的负二项分布Y m的概率。
5.8 PROBHYPR(N,K,n,x<,r>) 超几何分布的分布函数。
5.9 PROBBETA(x,a,b) 参数为(a,b)的Beta分布的分布函数。
5.10 PROBGAM(x,a) 参数为a的Gamma分布的分布函数。
5.11 PROBMC 计算多组均值的多重比较检验的概率值和临界值。
5.12 PROBBNRM(x,y,r) 标准二元正态分布的分布函数,r为相关系数。
六、分位数函数
分位数函数是概率分布函数的反函数。其自变量在0到1之间取值。分位数函数计算的是分布的左侧分位数。SAS提供了六种常见连续型分布的分位数函数:
6.1 PROBIT(p) 标准正态分布左侧p分位数。结果在-5到5之间。
6.2 TINV(p, df <,nc>) 自由度为df的t分布的左侧p分位数。可选参数nc为非中心参数。
6.3 CINV(p,df<,nc>) 自由度为df的卡方分布的左侧p分位数。可选参数nc为非中心参数。
6.4 FINV(p,ndf,ddf<,nc>) F(ndf,ddf)分布的左侧p分位数。可选参数nc为非中心参数。
6.5 GAMINV(p,a) 参数为a的伽马分布的左侧p分位数。
6.6 BETAINV(p,a,b) 参数为(a,b)的贝塔分布的左侧p分位数。
七、随机数函数
7.1 均匀分布随机数
有两个均匀分布随机数函数:UNIFORM(seed),seed必须是常数,为0,或5位、6位、7位的奇数。RANUNI(seed),seed为小于2**31-1的任意常数。在同一个数据步中对同一个随机数函数的多次调用将得到不同的结果,但不同数据步中从同一种子出发将得到相同的随机数序列。随机数种子如果取0或者负数则种子采用系统日期时间。
7.2 正态分布随机数
有两种:
(1) NORMAL(seed),seed为0,或5位、6位、7位的奇数。
(2) RANNOR(seed),seed为任意数值常数。
7.3 指数分布随机数
RANEXP(seed),seed为任意数值,产生参数为1的指数分布的随机数。
参数为lambda的指数分布可以用RANEXP(seed)/lambda得到。
7.4 伽马分布随机数
RANGAM(seed, alpha),seed为任意数值常数,alpha>0,得到参数为alpha的伽马分布。设X=RANGAM(seed, alpha),则Y=beta*X是形状参数为alpha,尺度参数为beta的GAMMA分布随机数。如果alpha是整数,则Y=2*X是自由度为 2*alpha的卡方分布随机数。
如果alpha是正整数,则Y=beta*X是Erlang分布随机数,为alpha个独立的均值为beta的指数分布变量的和。 如果Y1=RANGAM(seed,alpha),Y2=RANGAM(seed,beta),在Y=Y1/(Y1+Y2)是参数为(alpha,beta )的贝塔分布随机数。
7.5 三角分布随机数
RANTRI(seed,h),seed为任意数值常数,0<h<1。此分布在0到1取值,密度在0到h 之间为2x/h,在h到1之间为2(1-x)/(1-h)。
7.6 柯西分布随机数
RANCAU(seed),seed为任意数值常数。产生位置参数为0,尺度参数为1的标准柯西分布随机数。Y=alpha+beta*RANCAU(seed)为位置参数为alpha,尺度参数为beta的一般柯西分布随机数。
7.7 二项分布随机数
RANBIN(seed,n,p)产生参数为(n,p)的二项分布随机数,seed为任意数值。
7.8 泊松分布随机数
RANPOI(seed,lambda)产生参数为lambda>0的泊松分布随机数,seed为任意数值。
7.9 一般离散分布随机数
RANTBL(seed, p1, …, pn)生成取1,2,…,n的概率分别为p1,…,pn的离散分布随机数。
八、样本统计函数
样本统计函数把输入的自变量作为一组样本,计算样本统计量。其调用格式为“函数名(自变量1,自变量2,…,自变量n)”或者“函数名(OF 变量名列表)”。比如SUM是求和函数,如果要求x1,x2,x3的和,可以用SUM(x1,x2,x3),也可以用SUM(OF x1-x3)。这些样本统计函数只对自变量中的非缺失值进行计算,比如求平均时把缺失值不计入内。 数据分析师培训
8.1 MEAN 均值
8.2 MAX 最大值
8.3 MIN 最小值
8.4 N 非缺失数据的个数
8.5 NMISS 缺失数值的个数。
8.6 SUM 求和
8.7 VAR 方差
8.8 STD 标准差
8.9 STDERR 均值估计的标准误差,用STD/SQRT(N)计算。
8.10 CV 变异系数
8.11 RANGE 极差
8.12 CSS 离差平方和
8.13 USS 平方和
8.14 SKEWNESS 偏度
8.15 KURTOSIS 峰度
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06