SAS信用评分九步曲之第一步数据清洗
累积了一段时间的建模经验了,这次想把我在建模中用的代码分批分享出来,可能写的东西不是你能用到的,毕竟我们接触到的数据都不一样。但是譬如文本清洗之类的,看我之前的文章“正则式”还是可以找到解决方法的。我觉得数据面并不多,就是就我现有的数据做的数据处理。希望大神也可以指正我在建模中用的不恰当的处理数据的方式。那么就开始今天的分享啦。
今天主要想分享给大家的有三个代码:“缺失值填充”,“变量缺失值比例”“异常值检测”。
1、缺失值填充
缺失值补充这部分的代码是我在遇到譬如主表的数据是有的,但是left join的时候没有这个数据,但是他并不是缺失,只是客户真的没有。譬如房屋贷款笔数,假设客户没有房屋贷款,那么这个变量就是缺失的,但是他并不是缺失,他实际上没有,所以要填补一个零。这段代码是对数值的字符的整张数据集的变量的处理。
%macro missing(data);
data aa;
set &data;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
do i = 1 to dim(arr1);
if missing(arr1(I)) then do;
arr1(i)=0;
/*这里的arr1(i)=0;根据自己的需要,要0就是0也可以是别的值*/
end;
if missing(arr1(i)) then do;
arr1(i)=0;
end;
end;
do i = 1 to dim(arr2);
if missing(arr2(I)) then do;
arr2(i)="0";
end;
end;
run;
%mend;
Data填入数据集
代码我都是调试好的,所以可以直接用。
2、变量缺失值比例
经过缺失值填补之后,但是还有些改缺失还是缺失的,这时候要对变量做变量缺失率的检查,我这边是对于变量缺失率达到70%的就去掉这个变量。具体缺失比率在多少就不要,还是要看自己的业务需求。那上代码吧。这部分的代码是参考另外这个公众号的妹纸写的代码公众号是:数据分析sas和r和python。
data tmp11;
set raw.jxl_total_t;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
length variable $50;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
variable =vname(arr1(i));/*数值型缺失*/
output;
end;
end;
do j = 1to dim(arr2);
if missing(arr2(j)) then do;
variable = vname(arr2(j)); /*字符型缺失*/
output;
end;
end;
keep variable;
run;
proc sql noprint;
select count(*) into : N from raw.jxl_total_t;
create table miss as
select variable label = "缺失变量名",
count(*) as frequency label = "缺失频数",
input(compress(put(calculated frequency / &N.,percent10.2),'%'),best32.) as percent label = %nrstr("%缺失占比")
from tmp11
group by variable
having percent>70;
quit;
/*统计缺失频数和占比*/
3、异常值检测
剔掉缺失严重的变量,那么下一步就是做异常值的检查,不要让异常值坏了拟合结果,毕竟数据也是存在一颗老鼠屎坏了一锅粥。异常值我之前在前面的文章中有用到聚类,有3倍标准差,聚类的话可能对于字符变量可能好些,3倍标准差的话需要要求数据呈正态分布,但是我的数据貌似很难达到这个需求。如果需要以上提及的聚类或者是3倍标准差可以点:路径查看啦。那么一下这段代码我用的箱形图来找出异常值,并且将在区域以外的数据集用上下界的值代替。分享的代码没有固定的iqr,写的条件譬如,异常值都在1.5倍iqr达到1%,那么就将这部分的值判断为异常值,假设现在是3iqr外的异常值达到1%或者小于1%,但是2.5iqr以外的数据已经达到了1.5%,那么就行选定3iqr以外的数据为异常值。异常值检查只针对数值变量。我是不是废话很多,我很怕你们理解不了我的意思,如果不知道iqr是什么的,先百度下拉。接下来上代码。
%macro pub(data,var);
PROC UNIVARIATE DATA= &data.(where=(&var.^=.)) NOprint;
VAR &var.;
OUTPUT OUT=qdata Q1=q1 Q3=q3 QRANGE=iqr STD=VSTD Mean=VMean;
RUN;
DATA _null_;
SET qdata;
call symput('STD', VSTD);
call symput('Mean', VMean);
CALL SYMPUT("q1",q1);
CALL SYMPUT("q3",q3);
CALL SYMPUT("iqr",compress(iqr));
RUN;
%let qa=%sysevalf(&q1. -(1.5*&iqr.));
%let qb=%sysevalf(&q3. +(1.5*&iqr.));
%let qc=%sysevalf(&q1. -(2*&iqr.));
%let q4=%sysevalf(&q3. +(2*&iqr.));
%let q5=%sysevalf(&q1. -(2.5*&iqr.));
%let q6=%sysevalf(&q3. +(2.5*&iqr.));
%let q7=%sysevalf(&q1. -(3*&iqr.));
%let q8=%sysevalf(&q3. +(3*&iqr.));
%put &q1.&q8.;
DATA outliers;
SET &data.(where=(&var.^=.));
LENGTH severity $2;
severity="";
IF &var. <= &qa. OR &var. >= &qb. THEN severity="1";
else IF &var. <= &qc. OR &var. >= &q4. THEN severity="2";
else IF &var. <= &q5. OR &var. >= &q6. THEN severity="3";
else IF &var. <= &q7. OR &var. >= &q8. THEN severity="4";
IF severity in ("1","2","3","4") THEN OUTPUT outliers;
RUN;
proc sql;
%do f=1 %to 4;
select count(*) into:outliers_&f. from outliers where severity="&f.";
%end;
select count(*) into :n from &data.;
quit;
%put &outliers_1. &outliers_2.;
%put &n.;
%let out_1=%sysevalf(&outliers_1./&n.);
%let out_2=%sysevalf(&outliers_2./&n.);
%let out_3=%sysevalf(&outliers_3./&n.);
%let out_4=%sysevalf(&outliers_4./&n.);
data &data.;
set &data.;
length &var._1 8.;
if &out_1.<0.01 and &var.^=. then do;
if &var. <=&qa. then &var._1=0;
else if &var. >=&qb. then &var._1=&qb.;
else &var._1=&var.;
end;
if &out_2.<0.01 and &var.^=. then do;
if &var. <=&qc. then &var._1=0;
else if &var. >=&q4. then &var._1=&q4.;
else &var._1=&var.;
end;
if &out_3.<0.01 and &var.^=. then do;
if &var. <=&q5. then &var._1=0;
else if &var. >=&q6. then &var._1=&q6.;
else &var._1=&var.;
end;
if &out_4.<0.01 and &var.^=. then do;
if &var. <=&q7. then &var._1=0;
else if &var. >=&q8. then &var._1=&q8.;
else &var._1=&var.;
end;
else do ;
&var._1=. ;
end;
drop &var. ;
rename &var._1=&var. ;
run;
%mend;
pub(data,var) data填入数据集,var填入你要检测的变量。
代码中有很多可以优化地方,譬如那些重复的东西就可以用循环的,你问我为什么不用,是因为我懒得改了,如果你想自己优化一下,就自己优化一下吧。如果我后续优化了,再分享给你们也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30