关于“大数据”概念的产生
尽管“大数据”这个词直到最近才受到人们的高度关注,但早在1980年,著名未来学家托夫勒在其所著的《第三次浪潮》中就热情地将“大数据”称颂为 “第三次浪潮的华彩乐章”。《自然》杂志在2008年9月推出了名为“大数据”的封面专栏。从2009年开始“大数据”才成为互联网技术行业中的热门词汇。
对“大数据”进行收集和分析的设想,来自于世界著名的管理咨询公司麦肯锡公司。麦肯锡公司看到了各种网络平台记录的个人海量信息具备潜在的商业价值,于是投入大量人力物力进行调研,在2011年6月发布了关于“大数据”的报告,该报告对“大数据”的影响、关键技术和应用领域等都进行了详尽的分析。麦肯锡的报告得到了金融界的高度重视,而后逐渐受到了各行各业关注。
维克托·迈尔-舍恩伯格和肯尼斯·克耶编写的《大数据时代》中提出:“大数据”的4V特点:Volume(数据量大)、Velocity(输入和处理速度快)、Variety(数据多样性)、Value(价值密度低)。这些特点基本上得到了大家的认可,凡提到“大数据”特点的文章,基本上采用了这4 个特点。
自从有了云计算服务器,“大数据”才有了可以运行的轨道,才可以实现其真正的价值。有人就形象地将各种“大数据”的应用比作一辆辆“汽车”,支撑起这些“汽车”运行的“高速公路”就是云计算。最著名的实例就是Google搜索引擎。面对海量Web数据,Google于2006年首先提出云计算的概念。支撑Google内部各种“大数据”应用的,正是Google公司自行研发的云计算服务器。
《大数据时代》的作者维克托·迈尔·舍恩伯格解释:了解什么是“大数据”的定义非常关键。首先要明确的是,“大数据”并不是很大或者很多数据。根据维克托在书中的描述,“大数据”并不是一部分数据样本,而是关于某个现象的所有数据。第二点,由于掌握了关于某个现象的所有数据,那么在统计时就能接受更多不准确的信息。第三,“大数据”的分析着重在了解“什么”而不是“为什么”。比如人们可以通过各种相关数据来了解未来将会发生什么,而不是这些事情发生的原因。要探寻原因会更难,很多时候,知道会发生什么已经足够了。以上这些就是“大数据”的核心,有足够多的数据,允许数据中存在不准确的信息和不去探寻事件发生的原因而是探寻会发生什么事件。
维基百科对“大数据”的解读是:“大数据”(Bigdata),或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。
百度百科对“大数据”的定义为:“大数据”(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
传媒专家刘建明教授认为:“大数据”同信息是不可分离的,是指信息浩大数量的统计与技术运作。作为人类认知社会方法的一次飞跃,“大数据”技术将给企业运营、政府管理和媒体传播的科学化创造有效机制。
什么样的数据才是“大数据”?透过层层的迷雾和众说纷纭,可以讲:有了云计算服务器才有了“大数据”应用的价值。
维克托曾说过:“假设你要测量一个葡萄园的温度,但是整个葡萄园只有一个温度测量仪,那你就必须确保这个测试仪是精确的而且能够一直工作。反过来,如果每100棵葡萄树就有一个测量仪,有些测试的数据可能会是错误的,也可能会更加混乱,但众多的读数合起来就可以提供一个更加准确的结果。因为这里面包含了更多的数据,而它提供的价值不仅能抵消掉错误数据造成的影响,还能提供更多的额外价值。现在想想增加读数频率的这个事情。如果每隔一分钟就测量一下温度,十次甚至百次的话,不仅读数可能出错,连时间先后都可能搞混。试想,如果信息在网络中流动,那么一条记录很可能在传输过程中被延迟,在其到达的时候已经没有意义了,甚至干脆在奔涌的信息洪流中彻底迷失。虽然得到的信息不再准确,但收集到的数量庞大的信息让我们放弃严格精确的选择变得更为划算……为了高频率而放弃了精确性,结果观察到了一些本可能被错过的变化。虽然如果能够下足够多的工夫,这些错误是可以避免的,但在很多情况下,与致力于避免错误相比,对错误的包容会带来更多好处。为了规模的扩大,我们接受适量错误的存在。”其中描述葡萄园测量仪采集的数据就是大数据。
大数据实质上是全面、混杂的并且具有数据量大、输入和处理速度快、数据多样性、价值密度低特点的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12