
Cox回归分析及其SPSS操作方法概述
我们先回顾一下生存分析的KM法和寿命表法(回复数字26和27可以查看KM法的详细内容),其共同点是只能分析一种因素与生存率的关系,Log-Rank法也是比较一个因素两种水平间的生存差别,如果生存率的影响因素有很多,我们怎么避免其它混杂因素的影响呢?我们可以使用回归分析方法,但如果使用logistic回归,也是只能观察影响因素与结局的关联,没有考虑结局发生的时间因素。Cox回归可以解决这个问题。Cox回归一般模型假设为
其中h(t,X)是在时刻t的风险函数又可称瞬时死亡率,h(0,t)是基线风险率,其它与logistic回归模型相同。βj大于0则xj越大,病人死亡风险越大,βj小于0则xj越大,病人死亡风险越小,βj等于0则xj越与死亡率没有影响。Exp(β)为危险比(HR)或相对危险度(RR)。
下面以一个例子说明在SPSS中作Cox回归如何操作。
我们想观察乳腺癌的生存率及其影响因素,收集了1207例病例并进行了随访。观察的因素包括年龄(age)、病理肿瘤大小(pathsize)、腋窝淋巴结个数(lnpos)、组织学分级(histgrad)、雌激素状态(er)、孕激素状态(pr)和淋巴结转移(ln_yesno)等。time为随访时间,status为生存状态。
在SPSS菜单里点击“分析”-“生存函数”-“Cox回归”,在弹出的对话框里,将”time”和” status”分别选入时间和状态对话框,点击“定义事件”,填写“1”,将不同的影响因素选入协变量框中,方法可以选“向后:LR”(各种方法差别不大,可以自由选择)。
如果有多分类变量需要设置哑变量,可以点击右上角“分类”,将要设置哑变量的变量选入右边框中。并可以选择以第一个或者最后一个作为参照。
在右上角点击“选项”,可以选择“CI用于exp(B)”,用于计算HR的95%置信区间。
最后点击确定可看到Cox回归分析结果。
结果中第一个表给出病例纳入情况,如下图,数据共1207个病例,但最后一共纳入590例,其中40例出现事件(即死亡),另外617例因为有缺失值被排除。从中可以看出,数据质量不太好,有缺失值的病例占一半以上且有观察终点的病例只有40例。
下面的表中是哑变量编码情况,histgrad中“1”被编码为“0”“0”,即histgrad中“2”“3”均以“1”为参照。
下面再看主要的结果,即“方程中的变量”表。本表列出了多个步骤,在步骤1中,全部我们纳入的变量都进入分析,从前往后分别是模型系数(B)、系数标准误(SE)、Wald检验值,自由度(df)、p值,HR值(Exp(B))及其置信区间。接下来看步骤2,其相对于步骤1少了一个变量er。即步骤2中删除了步骤1中的P值最大的变量。同理依次删除p值最最大的变量。
下面我们看最后一步,即步骤5.经过筛选,只剩下三个变量,即认为这三个变量对生存率的影响,其中病理肿瘤大小对应的HR为1.566,大于1,即认为病理肿瘤越大,生存时间越短;同理腋窝淋巴结个数越多,生存时间越短;孕激素状态对应的HR为0.511,小于1,即有孕激素时生存时间越长。
需要说明的是Cox回归分析是比例风险模型,即模型假设在任一时间点两组的危险比是相同的。如下图所示:
而下图所示则不符合比例风险模型,不能作简单Cox回归。如果想作回归分析,可以咨询相关统计专家或查看专业书籍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09