我们不是大数据的人质
钱钟书先生写过一篇妙文,说从整个历史来看,古代其实相当于人类的小孩子时期,先前是幼稚的,经过了千百年的长进,慢慢才到了现代。时代越是古旧,它的历史就越短,时代越是在后,它积累的阅历越是深厚,年龄就越多。所以,总结来说,我们反而是我们祖父的前辈,上古三代反不如现代悠久古老。
现代人完全可以这样对待我们的历史和传统。我们的时代正在用这样的一种方式瓦解经典,时间再也不是淘洗作品的永恒标准,因为传统无法解释现代人的经验,历史也无法应对高速变化的现实,共识已经瓦解成了个人主义的炮灰,经典备受质疑,经典之中也许并无圣人之言,很可能都是无用的废话——如果按照现如今大数据的标准,所有的经典都应该抛弃在垃圾堆,因为其中撰写的都是无用之言和可疑之言,缺乏合理的大数据的论证。
这话说得有些滑稽,但确实是切中要害的现实概括:大数据神话正在横扫一切领域。原本我们以为大数据只能在科学等实证领域兴风作浪,后来才发现,大数据神话的野心是掌控一切现实,就连人文学科,也同样需要大数据的支撑,没有大数据支撑的文章都是耍流氓。以前,我们写文章会习惯性地写,苏格拉底说过,未经省察的人生是不值得过的。现在写作就会说,根据统计数据显示,或者根据某份权威的调查报告的统计数字,未经省察的人生幸福指数只有20%-40%左右。我们时代最流行的阅读是别人替你读书,把书的内容划重点,归纳和总结出各种所谓的“干货”和教条,然后塞给你,你马上就觉得自己变成了博学多知的百科全书——这就是现在“逻辑思维”正在推广的学习方式。我们渴望的知识不再是经过时间的淘洗依然存在的经典,我们最想获得的知识是维基百科。
按照现在最时髦的理论——其实就是流行的《未来简史》《大数据时代》之类通俗读物——人类所有的知识都可以归纳为某种算法。比如在中世纪,获得知识的公式是:知识=经文 逻辑。简单说就是,如果你先想要知道某个问题的答案,中世纪的人会阅读相关经文,然后用中世纪逻辑来理解经文的确切含义。
而进入了科学革命时代之后,这个算法的公式就是:知识=实证数据 数学。以地球的形状为例,我们就要搜集相关的实证数据,观察太阳、月亮和行星,积累了足够的观测值,再用数学工具加以分析,利用三角学进行推断。
很显然,以上的两个公式就算是正确的,帮助我们解决了很多问题,但仍然具有很大的缺陷,它无法处理我们的人生价值和意义问题。所以,某些以创造公式为己任的人,又费尽脑汁创造了一个获得伦理知识的公式:知识=体验 敏感性。就是说,如果我们想知道任何道德问题的答案,我们需要连接到自己的内心体验,并以最大的敏感性来观察它。
但是这个就很模糊了,体验不能用数据测量,敏感性更是无迹可循,唯一依靠的只有自己的感觉。如何对自己的感觉进行量化,或者用流行的大数据进行统计呢?如果这些都属模糊的数据,这种知识如何获得?所以在伦理学领域,或者在我们寻找人生意义的问题上,无法用一个统一的公式获得共识——幸好如此,否则我们都利用这种算法计算我们的感受,那人生还有什么意外的乐趣?
我不知道大数据时代到来对生活影响有多大。我只知道,任何数据都无法解决我人生各个阶段的意义,更无法解决抑郁、自杀、快乐、苦闷等情绪上的问题。换句话说,千万不要被大数据洗脑和挟持,我们不是大数据的人质,大数据应该是我们解决某种问题的方式。好像在每一个时代都会有这样一个走火入魔的时期,我们有上帝和神学统治一切的时期,然后是启蒙理性统治的时代,现在是大数据时代。但它们都不能成为简化人生的公式和算法。就算人工智能可以使用各种算法赢得未来,就算机器战胜了人的大脑,它只能说明人类的大脑比机器聪明,而不是相反,更不会让我们对其顶礼膜拜。对我们而言,无论是人工智能,还是大数据,它们只能成为人类寻找生命意义的工具,而不是目的。它们代替不了人类的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31