传感器是大数据的重要来源
全新的物联网应用——从医疗、智能能源到牲畜饲养——推动了更多分层智能的需求,可以解决安全性和隐私性问题,并且管理剧增的数据量。假设一场会议同时传送到三个城市的观众。当主持人向观众提问时,观众可以举手回答,对观点表示赞同。当举行投票时,全部三个城市的总投票数会实时呈现在主持人和观众面前。
实际上,这种未来的场景已经变成了现实。从某种程度上讲,我们做到了这一点,它展示了物联网的巨大潜力。它的运行原理如下。每一名观众都佩戴了内置运动传感器的腕带。腕带的传感器数据可以捕捉观众腕带的运动。
为了将这种动作消耗的通信带宽降到最低,同时降低无线通信的功耗,在腕带中运行的背景感知算法可以翻译传感器数据,并且寻找匹配用户抬手的垂直位置动作数据模式。当标志性运动出现时,腕带就会将数据传送到大会现场的无线接入点。
无线接入点将从腕带接收的数据做好时间标记,然后迅速将信息转发到云应用。这些应用会利用所有三场会议地点的腕带结果,推算出主持人发起投票的时间。尽管腕带中运行的算法可以识别垂直运动,但是传感器难以分辨出垂直运动的细微区别,究竟是用户正在举手,还是单纯因为观众烦躁不安或正在起身。然而,云环境的智能可以注意到,在狭窄的时间窗口期间大部分观众携带的传感器正在同时向上移动,由此推断会场正在投票。
源头的传感器
这个例子说明了物联网的众多架构挑战,在物联网互联设备的源头通常都是一个或多个传感器。传感器将物理环境(例如运动、磁场或周围环境)的信号转化为数字数据。因为传感器可以连续且自动提供数据,传感器数据会快速超越人工产生的数据量。
为了缓解数据堵塞及其相关的传输成本,智能传感器可以实时做出数据的重要或相关决策,只有当这些决策对上游应用有重要作用时才会传输这些数据。例如,运动传感器的算法可以确定传感器已经静止并且跳过一次更新。更加复杂的背景算法能够区分佩戴者抬手和其它运动(比如起身)之间的细微差异。在数据源部署智能会降低传感器数据消耗的通信带宽,并且延长电池驱动无线传感器节点的电池使用时间。但是,传感器节点的计算容量比云计算的成本更高, 针对特定应用设计的智能传感器面向不同的用途时可能效率较低。在安全性十分重要的环境中,数据源的智能也至关紧要。目前正在探讨各种不同的安全性和隐私性协会,这需要云应用和许可数据源(使用部分或全部数据)之间的协商。这在可穿戴式传感器领域特别敏感,它可以记录对个体看似毫无意义的各种信号。采用数据挖掘算法时这些信号与其它信号结合在一起,它们会无意间泄漏消费者隐私。
在网关级别,由传感器产生的需求也会非常急迫。传感器数据是实时数据,因此需要网关帮助同步不同组合的传感器数据,并且控制数据延迟。有时网关会执行进一步背景处理,以便降低上行链接带宽要求。
在云环境中,相同组合的传感器数据可以分配给多个服务器和应用的众多任务员工,因此相同腕带可以跟踪大会投票数,也可以监控穿戴者的活动等级,有助于预测日常流量模式。于是,有人发现基于传感器的物联网部署核心便是分层智能。
物联网互联设备,如同上述例子中的腕带,到2020年将会使全部连接化显得相形见绌,包括机器对机器、人类对机器和机器对机器连接在内。这一趋势由以下四个因素推动:
传感器和致动器的成本递减,特别是微电子机械系统(MEMS)技术令大量部署更加可行。
Wi-Fi路由线的成本递减,令大规模连接变得更加可行。
互联网通信协议第6版(IPv6)扩充了唯一互联网地址的数量,可以连接数万亿的实体。
无处不在的智能手机和平板电脑呈现出前所未有的连接流程和成果。
工业应用推动未来发展
尽管我们采用的实例——确实如此,如今物联网的许多注意力都与可穿戴设备有关——但是,物联网的更大商业潜力在于工业应用。麦肯锡、思科和GE全部瞄准物联网,到2025年会对我们的经济造成数万亿美元的影响,它们关注医疗保健和基础设施部署领域的受益。
如今的可穿戴技术并不会限制于仅仅满足消费的生活需求,而且可为社交媒体提供内容。它们还在应用于提高牲畜饲养的资产跟踪管理。
例如,高价赛马可以穿戴上传感器垫片和配置传感器的马蹄,可以帮助驯马师监控马匹的健康,记录它们的步态,上传数据,让各种算法监控马匹的行为,诊断疾病,且有助于提升马匹的整体健康状况。简单的运动传感器(例如跟踪活动的腕带)可以用于检测和报告智能计量表安装的篡改问题,保护系统安全性。
运动传感器结合压力传感器可以用来监控卧床不起的患者,测量呼吸和心率,甚至在患者试图下床时向护士站报警,寻求帮助。
如今,我们每年为150种独有的传感器应用提供服务。我们会看到传感器集成更多智能功能,并且需要更加紧密地将传感器与MCU和数字网络产品相互集成,作为系统解决方案。
我们的观察结果反映出,我们的系列产品需要更多的分层智能,以便解决电力保存、安全性和连接性问题。随着即将来临的物联网应用浪潮,我们认为传感器系统会变得更加复杂、更具背景和环境感知能力,幸运的是我们所有身在其中的人将会感觉更加有趣。
多维科技是全球第一家量产隧道磁电阻传感器的供应商,其TMR磁传感器技术领域遥遥领先于国内外的其他传感器公司。可以预见在未来的新兴领域中,多维科技将会有更多、更广的发展空间。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20