
传感器是大数据的重要来源
全新的物联网应用——从医疗、智能能源到牲畜饲养——推动了更多分层智能的需求,可以解决安全性和隐私性问题,并且管理剧增的数据量。假设一场会议同时传送到三个城市的观众。当主持人向观众提问时,观众可以举手回答,对观点表示赞同。当举行投票时,全部三个城市的总投票数会实时呈现在主持人和观众面前。
实际上,这种未来的场景已经变成了现实。从某种程度上讲,我们做到了这一点,它展示了物联网的巨大潜力。它的运行原理如下。每一名观众都佩戴了内置运动传感器的腕带。腕带的传感器数据可以捕捉观众腕带的运动。
为了将这种动作消耗的通信带宽降到最低,同时降低无线通信的功耗,在腕带中运行的背景感知算法可以翻译传感器数据,并且寻找匹配用户抬手的垂直位置动作数据模式。当标志性运动出现时,腕带就会将数据传送到大会现场的无线接入点。
无线接入点将从腕带接收的数据做好时间标记,然后迅速将信息转发到云应用。这些应用会利用所有三场会议地点的腕带结果,推算出主持人发起投票的时间。尽管腕带中运行的算法可以识别垂直运动,但是传感器难以分辨出垂直运动的细微区别,究竟是用户正在举手,还是单纯因为观众烦躁不安或正在起身。然而,云环境的智能可以注意到,在狭窄的时间窗口期间大部分观众携带的传感器正在同时向上移动,由此推断会场正在投票。
源头的传感器
这个例子说明了物联网的众多架构挑战,在物联网互联设备的源头通常都是一个或多个传感器。传感器将物理环境(例如运动、磁场或周围环境)的信号转化为数字数据。因为传感器可以连续且自动提供数据,传感器数据会快速超越人工产生的数据量。
为了缓解数据堵塞及其相关的传输成本,智能传感器可以实时做出数据的重要或相关决策,只有当这些决策对上游应用有重要作用时才会传输这些数据。例如,运动传感器的算法可以确定传感器已经静止并且跳过一次更新。更加复杂的背景算法能够区分佩戴者抬手和其它运动(比如起身)之间的细微差异。在数据源部署智能会降低传感器数据消耗的通信带宽,并且延长电池驱动无线传感器节点的电池使用时间。但是,传感器节点的计算容量比云计算的成本更高, 针对特定应用设计的智能传感器面向不同的用途时可能效率较低。在安全性十分重要的环境中,数据源的智能也至关紧要。目前正在探讨各种不同的安全性和隐私性协会,这需要云应用和许可数据源(使用部分或全部数据)之间的协商。这在可穿戴式传感器领域特别敏感,它可以记录对个体看似毫无意义的各种信号。采用数据挖掘算法时这些信号与其它信号结合在一起,它们会无意间泄漏消费者隐私。
在网关级别,由传感器产生的需求也会非常急迫。传感器数据是实时数据,因此需要网关帮助同步不同组合的传感器数据,并且控制数据延迟。有时网关会执行进一步背景处理,以便降低上行链接带宽要求。
在云环境中,相同组合的传感器数据可以分配给多个服务器和应用的众多任务员工,因此相同腕带可以跟踪大会投票数,也可以监控穿戴者的活动等级,有助于预测日常流量模式。于是,有人发现基于传感器的物联网部署核心便是分层智能。
物联网互联设备,如同上述例子中的腕带,到2020年将会使全部连接化显得相形见绌,包括机器对机器、人类对机器和机器对机器连接在内。这一趋势由以下四个因素推动:
传感器和致动器的成本递减,特别是微电子机械系统(MEMS)技术令大量部署更加可行。
Wi-Fi路由线的成本递减,令大规模连接变得更加可行。
互联网通信协议第6版(IPv6)扩充了唯一互联网地址的数量,可以连接数万亿的实体。
无处不在的智能手机和平板电脑呈现出前所未有的连接流程和成果。
工业应用推动未来发展
尽管我们采用的实例——确实如此,如今物联网的许多注意力都与可穿戴设备有关——但是,物联网的更大商业潜力在于工业应用。麦肯锡、思科和GE全部瞄准物联网,到2025年会对我们的经济造成数万亿美元的影响,它们关注医疗保健和基础设施部署领域的受益。
如今的可穿戴技术并不会限制于仅仅满足消费的生活需求,而且可为社交媒体提供内容。它们还在应用于提高牲畜饲养的资产跟踪管理。
例如,高价赛马可以穿戴上传感器垫片和配置传感器的马蹄,可以帮助驯马师监控马匹的健康,记录它们的步态,上传数据,让各种算法监控马匹的行为,诊断疾病,且有助于提升马匹的整体健康状况。简单的运动传感器(例如跟踪活动的腕带)可以用于检测和报告智能计量表安装的篡改问题,保护系统安全性。
运动传感器结合压力传感器可以用来监控卧床不起的患者,测量呼吸和心率,甚至在患者试图下床时向护士站报警,寻求帮助。
如今,我们每年为150种独有的传感器应用提供服务。我们会看到传感器集成更多智能功能,并且需要更加紧密地将传感器与MCU和数字网络产品相互集成,作为系统解决方案。
我们的观察结果反映出,我们的系列产品需要更多的分层智能,以便解决电力保存、安全性和连接性问题。随着即将来临的物联网应用浪潮,我们认为传感器系统会变得更加复杂、更具背景和环境感知能力,幸运的是我们所有身在其中的人将会感觉更加有趣。
多维科技是全球第一家量产隧道磁电阻传感器的供应商,其TMR磁传感器技术领域遥遥领先于国内外的其他传感器公司。可以预见在未来的新兴领域中,多维科技将会有更多、更广的发展空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20