
传感器是大数据的重要来源
全新的物联网应用——从医疗、智能能源到牲畜饲养——推动了更多分层智能的需求,可以解决安全性和隐私性问题,并且管理剧增的数据量。假设一场会议同时传送到三个城市的观众。当主持人向观众提问时,观众可以举手回答,对观点表示赞同。当举行投票时,全部三个城市的总投票数会实时呈现在主持人和观众面前。
实际上,这种未来的场景已经变成了现实。从某种程度上讲,我们做到了这一点,它展示了物联网的巨大潜力。它的运行原理如下。每一名观众都佩戴了内置运动传感器的腕带。腕带的传感器数据可以捕捉观众腕带的运动。
为了将这种动作消耗的通信带宽降到最低,同时降低无线通信的功耗,在腕带中运行的背景感知算法可以翻译传感器数据,并且寻找匹配用户抬手的垂直位置动作数据模式。当标志性运动出现时,腕带就会将数据传送到大会现场的无线接入点。
无线接入点将从腕带接收的数据做好时间标记,然后迅速将信息转发到云应用。这些应用会利用所有三场会议地点的腕带结果,推算出主持人发起投票的时间。尽管腕带中运行的算法可以识别垂直运动,但是传感器难以分辨出垂直运动的细微区别,究竟是用户正在举手,还是单纯因为观众烦躁不安或正在起身。然而,云环境的智能可以注意到,在狭窄的时间窗口期间大部分观众携带的传感器正在同时向上移动,由此推断会场正在投票。
源头的传感器
这个例子说明了物联网的众多架构挑战,在物联网互联设备的源头通常都是一个或多个传感器。传感器将物理环境(例如运动、磁场或周围环境)的信号转化为数字数据。因为传感器可以连续且自动提供数据,传感器数据会快速超越人工产生的数据量。
为了缓解数据堵塞及其相关的传输成本,智能传感器可以实时做出数据的重要或相关决策,只有当这些决策对上游应用有重要作用时才会传输这些数据。例如,运动传感器的算法可以确定传感器已经静止并且跳过一次更新。更加复杂的背景算法能够区分佩戴者抬手和其它运动(比如起身)之间的细微差异。在数据源部署智能会降低传感器数据消耗的通信带宽,并且延长电池驱动无线传感器节点的电池使用时间。但是,传感器节点的计算容量比云计算的成本更高, 针对特定应用设计的智能传感器面向不同的用途时可能效率较低。在安全性十分重要的环境中,数据源的智能也至关紧要。目前正在探讨各种不同的安全性和隐私性协会,这需要云应用和许可数据源(使用部分或全部数据)之间的协商。这在可穿戴式传感器领域特别敏感,它可以记录对个体看似毫无意义的各种信号。采用数据挖掘算法时这些信号与其它信号结合在一起,它们会无意间泄漏消费者隐私。
在网关级别,由传感器产生的需求也会非常急迫。传感器数据是实时数据,因此需要网关帮助同步不同组合的传感器数据,并且控制数据延迟。有时网关会执行进一步背景处理,以便降低上行链接带宽要求。
在云环境中,相同组合的传感器数据可以分配给多个服务器和应用的众多任务员工,因此相同腕带可以跟踪大会投票数,也可以监控穿戴者的活动等级,有助于预测日常流量模式。于是,有人发现基于传感器的物联网部署核心便是分层智能。
物联网互联设备,如同上述例子中的腕带,到2020年将会使全部连接化显得相形见绌,包括机器对机器、人类对机器和机器对机器连接在内。这一趋势由以下四个因素推动:
传感器和致动器的成本递减,特别是微电子机械系统(MEMS)技术令大量部署更加可行。
Wi-Fi路由线的成本递减,令大规模连接变得更加可行。
互联网通信协议第6版(IPv6)扩充了唯一互联网地址的数量,可以连接数万亿的实体。
无处不在的智能手机和平板电脑呈现出前所未有的连接流程和成果。
工业应用推动未来发展
尽管我们采用的实例——确实如此,如今物联网的许多注意力都与可穿戴设备有关——但是,物联网的更大商业潜力在于工业应用。麦肯锡、思科和GE全部瞄准物联网,到2025年会对我们的经济造成数万亿美元的影响,它们关注医疗保健和基础设施部署领域的受益。
如今的可穿戴技术并不会限制于仅仅满足消费的生活需求,而且可为社交媒体提供内容。它们还在应用于提高牲畜饲养的资产跟踪管理。
例如,高价赛马可以穿戴上传感器垫片和配置传感器的马蹄,可以帮助驯马师监控马匹的健康,记录它们的步态,上传数据,让各种算法监控马匹的行为,诊断疾病,且有助于提升马匹的整体健康状况。简单的运动传感器(例如跟踪活动的腕带)可以用于检测和报告智能计量表安装的篡改问题,保护系统安全性。
运动传感器结合压力传感器可以用来监控卧床不起的患者,测量呼吸和心率,甚至在患者试图下床时向护士站报警,寻求帮助。
如今,我们每年为150种独有的传感器应用提供服务。我们会看到传感器集成更多智能功能,并且需要更加紧密地将传感器与MCU和数字网络产品相互集成,作为系统解决方案。
我们的观察结果反映出,我们的系列产品需要更多的分层智能,以便解决电力保存、安全性和连接性问题。随着即将来临的物联网应用浪潮,我们认为传感器系统会变得更加复杂、更具背景和环境感知能力,幸运的是我们所有身在其中的人将会感觉更加有趣。
多维科技是全球第一家量产隧道磁电阻传感器的供应商,其TMR磁传感器技术领域遥遥领先于国内外的其他传感器公司。可以预见在未来的新兴领域中,多维科技将会有更多、更广的发展空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10