中国智能交通产业大数据应用分析
中国大数据产业起步晚,发展速度快。物联网、移动互联网的迅速发展,使数据产生速度加快、规模加大,迫切需要运用大数据手段进行分析处理,提炼其中的有效信息。
2014年,中国大数据市场规模达到767亿元,同比增长27.8%。预计到2020年,中国大数据产业规模将达到8228.81亿元。2015-2017年复合增长率为51.5%。2014年,中国大数据应用市场规模为80.54亿元,同比增长3.2%,2015年市场规模约增长37.3%,至110.56亿元,预计到2020年,中国大数据应用市场规模将增长至5019.58亿元。2015-2017年复合增速为87.8%。
2014-2020年中国大数据产业规模市场及预测
大数据应用于智能交通产业
当智能交通遇到大数据,如同二氧化锰在制取氧气的实验中作为催化剂一样,一场剧烈的化学反应加剧了两方的共同发展。
随着城市的迅速发展,交通拥堵、交通污染日益严重,交通事故频繁发生,这些都是各大城市亟待解决的问题。智能交通成为改善城市交通的关键所在。为此,及时、准确获取交通数据并构建交通数据处理模型是建设智能交通的前提,而这一难题可以通过大数据技术得到解决。
1、智能交通需求与大数据契合
智能交通整体框架主要包括物理感知层、软件应用平台及分析预测及优化管理的应用。其中物理感知层主要是对交通状况和交通数据的感知采集;软件应用平台是将各感知终端的信息进行整合、转换处理,以支撑分析预警与优化管理的应用系统建设;分析预测及优化管理应用主要包括交通规划、交通监控、智能诱导、智能停车等应用系统。
系统利用先进的视频监控、智能识别和信息技术手段,增加可管理空间、时间和范围,不断提升管理广度、深度和精细度。整个系统由信息综合应用平台、信号控制系统、视频监控系统、智能卡口系统、电子警察系统、信息采集系统、信息发布系统等组成。以达到四方面的目标:提高通行能力、减少交通事故、打击违章事件、出行信息服务。
智能交通整体应用架构图
整个系统建设的核心是数据的采集、存储与计算,而其中最重要的核心思想就是“数据是价值”。问题就是如何把数据转换成价值。这就成为一个技术问题。
从统计学的角度,任何领域任何动态发展的事物,只要有足够多的样本数据,就一定能从样本数据中找到动态发展的规律。数据越多,准确率越高。这个“规律”就是数据的价值所在。对于商业机构,可以分析用户行为规律从而提高销售量;分析目标市场规律,定点投放广告从而降低成本等等;对于公安行业,可以分析区域性犯罪趋势,提前预防从而降低犯罪率;还可以分析交通行为规律,提前做交通疏导,提高交通通畅率,这就能真正挖掘数据的潜在价值,提高其社会价值。
从20世纪初的网络发展以来,进入一个高度联网的阶段。联网的同时,数据高度集中,数据量急剧增加。据IDC报告现在互联网的数据,每两年就翻一番。这个增长率在智能交通行业同样有效,随着卡口、电警、摄像机数量的增加,高清化、智能化的发展,如果再算上物联网的各种传感器,未来几年的数据量增加可能大大高于这个增长率。这就为智能交通行业实现大数据提供了数据基础。
从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。由此我们再看IBM归纳的4个V(量Volume,多样Variety,价值Value,速Velocity):
(1)Volume数据体量巨大。从TB级别,跃升到PB级别;
(2)Variety数据类型繁多。包括视频、图片、地理位置信息、传感器数据等等。
(3)Value价值密度低,应用价值高。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
(4)Velocity处理速度快,1秒定律。
最后这一点也是和传统的数据挖掘技术有着本质的不同。在交通领域,海量的数据主要包括4个类型的数据:传感器数据(位置、温度、压力、图像、速度、RFID等信息);系统数据(日志、设备记录、MIBs等);服务数据(收费信息、上网服务及其他信息);应用数据(生成厂家、能源、交通、性能、兼容性等信息)。交通数据的类型繁多,而且体积巨大。量Volume和多样Variety是因,数据类型的复杂和数据量的急剧增加,决定了原有简单因果关系的应用模式对数据使用率极低,完全无法发挥数据的作用;速Velocity是过程,巨大的运算量决定了速度必须快;价值Value是最终的果。
2、大数据采集
在各城市建设智慧交通的过程中,将产生越来越多的视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等数据,每天产生的数据量可以达到PB级别,并且呈现指数级增长。
3、大数据增值应用
深入挖掘数据价值,在智能交通、公安实战等行业上推出车辆轨迹、道路流量、案件聚类等大数据模型。基于大数据模型,推出智能套牌、智能跟车分析、轨迹碰撞、人脸比对、舆情分析等数据增值应用,逐步解决行业的深层次问题。
4、海量数据计算
通过云计算集群,实现对海量数据的分布式高速计算,支撑对海量数据的高效分析挖掘。云计算集群是一种M/S架构的分布式计算系统,Master作为调度管理服务器,负责计算任务分解与调度、计算资源统一管理。Slave则由大量的计算服务器组成,负责完成Master下发的计算任务。
5、海量数据检索
基于行业数据查询特点,对搜索引擎进行优化定制,支持百亿记录的秒级高速查询。通过集群机制,实现搜索服务的高可靠性、高容错性、高扩展性。
6、海量数据存储
对于海量数据存储,采用HBase分布式存储系统。相比传统关系型数据库,有四个特点:数据格式灵活、高可用、横向扩展能力强和访问高效。
同时能够做到无缝集成,快速从关系型数据库导入已经存在的历史数据。提供高可靠性、高容错性、高性能的海量数据存储解决方案,支持无缝容量扩展。
7、大数据分析与应用
高效的云计算能力,带来千亿数据的秒级返回的检索能力,为大数据分析应用,提供了快速的保障。基于深度学习的智能分析算法,为大数据分析应用提供有力的工具。交通大数据的分析,为交通管理、决策、规划、服务以及主动安全防范带来更加有效的支持。
利用大数据技术,结合高清监控视频、卡口数据、线圈微采集波数据等,再辅以智能研判,基本可以实现路口的自适应以及信号配时的优化。通过大数据分析,得出区域内多路口综合通行能力,用于区域内多路口红绿灯配时优化,达到提升单一路口或区域内的通行效率。如根据平日/节假日,早、晚高峰/其他时段,主要干道关键路口/次关键路口/普通路口,白天/夜间等不同情况,人工或系统自动设置不同的配时,达到大幅提高区域内交通通行能力。
大数据分析研判功能,还可以支持对卡口数据、视频监控数据进行二次识别,提高车辆信息的准确性,进而利用大数据实现轨迹分析、落脚点分析、隐匿车辆分析等功能。对车辆大数据进行深入挖掘,实现事前全面监控、事中及时追踪、事后准确回溯的不同场景需求。常州市建设的车辆大数据平台,协助有关部门每天自动发现套牌车辆10余起,再根据车辆的轨迹分析和落脚点分析,快速找到套牌车辆进行处罚管理。
结合智能算法,二次识别等功能,可以更准确的识别车牌、车身颜色、车型、车标、年款等特征,并且对遮阳板检测、安全带检测、接打电话检测、司机人脸识别等进行分析。
利用智能交通的管理系统,可以获取道路天气、施工情况、事故情况、结合大数据分析,为出行司机和交管部门提供天气、路面状况、事故易发地点、停车场等信息,并根据车辆目的地、行驶习惯,路面情况推荐行驶路线。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20