数据分析之如何优化广告投放
对于大多数广告主来说,广告投放的目的无非就是吸引更多的用户,最终实现营销转化。但同时他们也更加关注这些信息,比如:
广告是否按时投放?
媒体/广告公司承诺的量是否达到?
媒体/广告公司出示的数据是真实的吗?
媒体有没有作弊?
广告的投入与产出是否成正比……等等。
广告主为什么会在意这些?我们以下图为例,笔记本在ZOL投放的费用明细:
从上图不难看出,对于广告主来说广告费用是一笔不小的支出,每一笔广告投放都需要投入大量的资金,谁都希望每一笔费用都花在刀刃上。想要了解上述各种题就要知道广告投放中的各项数据指标所代表的意义,这样才不会被虚假信息所蒙蔽。
广告投放数字背后的玄机
广告效果指标分很多,每一种监测指标反映不同的数据效果,比如二跳率、到达率等反应广告效果有没有达到媒体的承诺;曝光量、点击量反映CPC、CPM够不够,广告受众地域分布反应投放的区域受众人群是不是正确等信息。
同时投放的维度不同监测的指标也不同。比如以推广品牌为目的重点关注点击量、点击用户数、点击IP数,以及到达量、到达用户数 ;以引入流量为目的重点关注到达量、到达用户数、二跳量以及总浏览量;以引导用户参与活动为目的重点关注转化量、转化用户数;以促进销售为目的重点关注转化明细。
与媒体数据指标相比,广告主更加关注广告效果。
数据指标反映了投放的结果,但在实际操作过程中,面对形式繁多的广告,哪个位置,哪个媒介是最好的?如何衡量广告效果?其中哪些广告是有效的?哪些媒介组合是真正有效的呢…..?这一系列问题也是广告主所关注的。
那么在广告投放中,如何解决这些问题,实现精准投放呢?这就需要对广告投放进行优化,对于广告投放中出现的问题及时解决。
一、了解评估广告效果的基本方法
广告效果评估一般围绕点击量(曝光量)、到达量、二跳量、转化量四个指标来评估,每一个指标衡量不同阶段的广告投放数据,通过这些数据帮助我们分析广告投放中出现的问题。据此我们用一个漏斗图为大家展示一下:
其中我们要重点提一下,这里的“点击量”比“曝光量”更重要。 因为衡量广告效果一般是要测算“接触广告的目标受众”, 用曝光代码来统计并不准确。这是因为:
1、曝光代码触发次数 ≠ 广告曝光量(广告实际展示次数)
2、广告曝光量 ≠ 看到广告的人数(互联网广告形式千差万别,同样曝光量的广告,真正注意到/看到的人数差别可能巨大)
3、看到广告的人 ≠ 品牌的目标受众
这中间有3级差异,所以用曝光来测算“接触到广告的 目标受众”很不准确。 点击量才反应真实效果,曝光量作参考。
二、了解转化
广告投放离不开网站这个媒介资源,通过网站,我们要了解这些信息:
哪些地区带来的注册用户多,哪些搜索引擎带来的订单多,哪个广告渠道的转化率最高,哪个着陆页面带来的转化率最高等等。
通过掌握这些转化信息,帮助我们分析转化的情况,比如:
外部来源网站的转化量,可以直接体现该网站的网民质量,同时结合外部来源流量,体现各来源的转化率效果。
转化明细可以将每一个具体转化的效果剖析出来,作为广告CPS效果的评估依据。
三、了解流量
广告要实现转化,最重要的一点就是要有流量,流量从哪里来?哪些途径带来的用户多,哪些地区带来的多…..通过流量来源分析,帮助我们优化调整广告投放渠道和广告方案。比如:
1、根据外部来运网站流入量和二跳率排名,刷选优质来源,剔除劣质来源。
2、根据网站流量曲线规律,了解网民登录网站的习惯,选择最佳的广告内容发布时间。
3、根据网站流量时段变化,发现流量的规律和异常点,进而查找深层原因,及时发现问题,调整投放。
四、区别辨别流量质量
在广告投放过程中,常常遇见虚假流量,恶意点击等现象,因此评估流量的质量有四大要素:恶意点击、虚假流量、着陆页面内容访问、流量用户的活跃度。同时虚假、低质流量具有以下特征:
24小时的流量数据非常均匀,没有明显特征
以天为单位的流量图时高时低,波动非常剧烈
全国各个地区的点击、到达、二跳比率非常接近
着陆页面点击很少,几乎没有任何内容被关注
广告访客的浏览深度接近1层
总之,做好广告投放优化最终目的就是提高广告ROI,其实归根到底一句话,就是让花出去的每一分广告费都起作用,那么如何让每一个广告都起作用呢,其实就是让每一个广告都变得可衡量,让每个广告的最后效果都能用精确的数字来展现,这样精准度才会更高,广告价值也才会最大化。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31