数据分析之如何优化广告投放
对于大多数广告主来说,广告投放的目的无非就是吸引更多的用户,最终实现营销转化。但同时他们也更加关注这些信息,比如:
广告是否按时投放?
媒体/广告公司承诺的量是否达到?
媒体/广告公司出示的数据是真实的吗?
媒体有没有作弊?
广告的投入与产出是否成正比……等等。
广告主为什么会在意这些?我们以下图为例,笔记本在ZOL投放的费用明细:
从上图不难看出,对于广告主来说广告费用是一笔不小的支出,每一笔广告投放都需要投入大量的资金,谁都希望每一笔费用都花在刀刃上。想要了解上述各种题就要知道广告投放中的各项数据指标所代表的意义,这样才不会被虚假信息所蒙蔽。
广告投放数字背后的玄机
广告效果指标分很多,每一种监测指标反映不同的数据效果,比如二跳率、到达率等反应广告效果有没有达到媒体的承诺;曝光量、点击量反映CPC、CPM够不够,广告受众地域分布反应投放的区域受众人群是不是正确等信息。
同时投放的维度不同监测的指标也不同。比如以推广品牌为目的重点关注点击量、点击用户数、点击IP数,以及到达量、到达用户数 ;以引入流量为目的重点关注到达量、到达用户数、二跳量以及总浏览量;以引导用户参与活动为目的重点关注转化量、转化用户数;以促进销售为目的重点关注转化明细。
与媒体数据指标相比,广告主更加关注广告效果。
数据指标反映了投放的结果,但在实际操作过程中,面对形式繁多的广告,哪个位置,哪个媒介是最好的?如何衡量广告效果?其中哪些广告是有效的?哪些媒介组合是真正有效的呢…..?这一系列问题也是广告主所关注的。
那么在广告投放中,如何解决这些问题,实现精准投放呢?这就需要对广告投放进行优化,对于广告投放中出现的问题及时解决。
一、了解评估广告效果的基本方法
广告效果评估一般围绕点击量(曝光量)、到达量、二跳量、转化量四个指标来评估,每一个指标衡量不同阶段的广告投放数据,通过这些数据帮助我们分析广告投放中出现的问题。据此我们用一个漏斗图为大家展示一下:
其中我们要重点提一下,这里的“点击量”比“曝光量”更重要。 因为衡量广告效果一般是要测算“接触广告的目标受众”, 用曝光代码来统计并不准确。这是因为:
1、曝光代码触发次数 ≠ 广告曝光量(广告实际展示次数)
2、广告曝光量 ≠ 看到广告的人数(互联网广告形式千差万别,同样曝光量的广告,真正注意到/看到的人数差别可能巨大)
3、看到广告的人 ≠ 品牌的目标受众
这中间有3级差异,所以用曝光来测算“接触到广告的 目标受众”很不准确。 点击量才反应真实效果,曝光量作参考。
二、了解转化
广告投放离不开网站这个媒介资源,通过网站,我们要了解这些信息:
哪些地区带来的注册用户多,哪些搜索引擎带来的订单多,哪个广告渠道的转化率最高,哪个着陆页面带来的转化率最高等等。
通过掌握这些转化信息,帮助我们分析转化的情况,比如:
外部来源网站的转化量,可以直接体现该网站的网民质量,同时结合外部来源流量,体现各来源的转化率效果。
转化明细可以将每一个具体转化的效果剖析出来,作为广告CPS效果的评估依据。
三、了解流量
广告要实现转化,最重要的一点就是要有流量,流量从哪里来?哪些途径带来的用户多,哪些地区带来的多…..通过流量来源分析,帮助我们优化调整广告投放渠道和广告方案。比如:
1、根据外部来运网站流入量和二跳率排名,刷选优质来源,剔除劣质来源。
2、根据网站流量曲线规律,了解网民登录网站的习惯,选择最佳的广告内容发布时间。
3、根据网站流量时段变化,发现流量的规律和异常点,进而查找深层原因,及时发现问题,调整投放。
四、区别辨别流量质量
在广告投放过程中,常常遇见虚假流量,恶意点击等现象,因此评估流量的质量有四大要素:恶意点击、虚假流量、着陆页面内容访问、流量用户的活跃度。同时虚假、低质流量具有以下特征:
24小时的流量数据非常均匀,没有明显特征
以天为单位的流量图时高时低,波动非常剧烈
全国各个地区的点击、到达、二跳比率非常接近
着陆页面点击很少,几乎没有任何内容被关注
广告访客的浏览深度接近1层
总之,做好广告投放优化最终目的就是提高广告ROI,其实归根到底一句话,就是让花出去的每一分广告费都起作用,那么如何让每一个广告都起作用呢,其实就是让每一个广告都变得可衡量,让每个广告的最后效果都能用精确的数字来展现,这样精准度才会更高,广告价值也才会最大化。数据分析师培训
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20