
最近一个同学找到我,希望我帮忙处理一份数据。那份数据是这样的:包含了3661行,第一行为各列的名称;包含8列,第一列为专利ID,其余7列为企业ID。
这份数据截图如下所示:
一、问题描述
需要做的数据处理是,求所有专利之间的关系矩阵,这里的关系指的是:当同一个企业同时申请了两个不同的专利,那么就认为这两个专利是有关系的。也就是说,当两个专利对应的企业的集合存在交集,则认为这两个专利存在关系。需要用矩阵表达这3660个专利的相互关系,有关系的两个专利交叉的位置置为1,否则置为0。
比如,上图中的编号4和编号5对应的企业的集合显然存在交集(交集为94和115),那么最终的关系矩阵第四行第五列和第五行第四列就应当用1表示。如果数据就是上边那样的,那么最终输出的关系矩阵就应该为:
二、问题解决
可能因为有段时间没有使用R了,加上之前又正好在用awk, grep, bash这些,所以一直想使用这些工具来解决。不过,想了很久,依然进展不大(主要是许久不用大多也忘了o(╯□╰)o)。后来看到压在桌面上的《R语言实战》,想到这里需要的输出是矩阵,而且主要的逻辑判定为是否有交集,这些不正是R大展拳脚的地方吗?!
于是先用伪代码将整个逻辑梳理了一遍,然后照着伪代码开始写R脚本。由于逻辑并不复杂,所以很快便写好了,代码如下:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data[i, -1][!is.na(data[i, -1])] #读取第i个专利对应的企业编号集合
company_set2 = data[j, -1][!is.na(data[j, -1])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
代码是很快写好了,不过执行速度确慢得难以忍受。无奈,找了个办法来缓解下焦急等待程序跑完的心情。到统计之都找到一个用在循环里显示进度条的程序改了改,终于好点了,也大概能算出来程序什么时候能跑完了。
包含显示进度条的程序代码如下:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0
#创建进度条pb <- txtProgressBar(min = 0, max = 3660, style = 3)
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data[i, -1][!is.na(data[i, -1])] #读取第i个专利对应的企业编号集合
company_set2 = data[j, -1][!is.na(data[j, -1])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
#设置进度条
Sys.sleep(0.00001)
setTxtProgressBar(pb, i)
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
显示效果如下所示:
三、解决优化
虽然比之前好些了,但还是没有解决程序运行缓慢等待时间过长的问题。毫无疑问,这段程序肯定还有很大的优化空间,于是先读取少量的数据,试着使用Rprof分析了一下耗时情况,结果发现[.data.frame 这个操作的耗时占比较大,Google搜索后在 这里 找到了一个优化的方法,即对源数据读取到到data frame之后再拷贝到一个矩阵中做取行的值的操作。优化后的版本:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0data_matrix <- data.matrix(data_test[, -1]) #将数据拷贝到一个矩阵中
#创建进度条#pb <- txtProgressBar(min = 0, max = 3660, style = 3)
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data_matrix[i, ][!is.na(data_matrix[i, ])] #读取第i个专利对应的企业编号集合
company_set2 = data_matrix[j, ][!is.na(data_matrix[j, ])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
#设置进度条
#Sys.sleep(0.00001)
#setTxtProgressBar(pb, i)
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
在同样的机器环境下,改进后的程序只需要10min左右,而改进前的版本则需要将近7个小时,执行效率提高了40倍!
四、补充
在做这个数据处理过程中,值得记录的还包括:
R语言程序多个语句的时候记得带上{},用缩进控制是Python的做法;
源数据读取之前要简单校验下,防止包含异常值影响数据读取的结果(这里包含了#REF!,处理很久才发现);
在Excel中比较两份格式完全一样的数据是否相同,复制其中一份选择性粘贴“减”操作到另一份数据,选择数据区域看右下角显示的总和是否为0即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
全球第一!上交AI智能体炼成Kaggle特级大师登顶OpenAI MLE-bench 编辑:KingHZ 好困 【新智元导读】刚刚,由上海交通大学人 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24