
单样本t检验的spss实现
直接来看一个例子:
常规种植条件下某玉米品的平均穗重为 300g 。现在采用根外施肥(即将肥料制成液体养分,喷洒到玉米的叶面)后,调查了 20 个玉米棒 ,其穗重如表 1所示。问:改用叶面施肥后,穗重是 否显著增加了 ?(置信度为 95% 或者显著水平 α=0.05)
表1 20个玉米穗的重量(单位:g)
这是一个单尾测验,原假设和备择假设是:
原假设(无效假设):叶面施肥没有增产效果。
备择假设 :叶面施肥有增产效果
在SPSS中不能直接进行单尾测验,但是SPSS却可以输出t统计量的双侧检验相伴概率sig,将得到的相伴概率除以2,即得到单尾测验的相伴概率。将这个相伴概率与0.05进行比较,小于0.05则拒绝原假设。
单样本t检验的SPSS操作
首先将数据导入或者录入到spss中,然后依次 选择分析 <均值比较 <单样本t检验. 出现如下图所示的窗口。
将要检验的变量“穗重”选入到“检验变量”窗口,同时输入给定的用于对比的那个值,此处为常规种植条件下的穗重均值300.设置完毕后,点击确定。输出结果中的描述性统计这里就不讨论了,直接看t检验的结果。
你可以找一本统计学教材,对着t分布表,查看一下自由度为19,显著水平为0.05时,的双侧检验的t临界值,将这里得到的t值与那个临界值进行比较,如果这里的t值大于那个临界值,则拒绝原假设,这和p值小于0.05是等价的。
如下图所示,这里得到的双侧t检验相伴概率为0.006,那么单侧相伴概率为0.003,无论是双侧检验还是单侧检验,都可以拒绝原假设,考虑到叶面施肥后的穗重均值为300+7=307,因此认为叶面施肥能够极显著地增加穗重。
双侧检验与单侧检验
下面两张图片中,第一个图中黑色区域表示的是单侧检验的拒绝域。第二个图表示的双侧检验的拒绝域。同样是0.05的置信水平,双侧检验与单侧检验,临界值是不同的,因为黑色区域的位置不同,尽管它们的总面积是相等的。
进行大端单尾测验时,当计算得到的t统计量大于黑色区域与白色区域的临界位置对应的横轴值时,拒绝原假设。而这时,相伴概率也一定小于0.05,因此使用相伴概率和t临界值来决定原假设的取舍,原理本质上是一样的。只不过教材上进行案例讲解时,一般使用临界值,因为相伴概率计算困难。而统计软件一般直接给出相伴概率。(相伴概率即为p值或者spss输出的sig值。)
进行双侧检验时,计算得到的统计量落入两边任意一块黑色区域,就应该拒绝原假设。或者相伴概率小于0.05时,拒绝原假设。(黑色区域表示的是一个很小的概率,这样小的概率,通过一次试验一般是不会发生,如果发生,说明原假设有问题,说明真实的分布不是原假设成立时的这个分布,均值要改变才行,均值改变了才能符合被检验的数据,所以被检验的数据的均值与原来那个设定值是不同的。)
单侧检验的R语言实现
如果你一定要直接得出单侧检验的结果,那也不是没有办法,R语言可以直接得出单侧检验的结果。给出代码如下:
t_test01.1<-read.csv(file="D:/单样本t检验_玉米.csv",header=TRUE)
#载入数据
t.test(t_test01.1$穗重,
alternative =c("greater"),
mu =300, paired =FALSE,
conf.level =0.95
) #进行单样本t检验
输出结果如下
OneSample t-test
data: t_test01.1$穗重
t=3.1239, df=19, p-value =0.002794
alternative hypothesis: true mean is greater than 300
95 percent confidence interval:
303.1254 Inf
sample estimates:
mean of x
307
得到 p-value =0.002794<0.05,拒绝原假设,选择备择假设:alternative hypothesis: true mean is greater than 300。(实际均值大于300)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09