单样本t检验的spss实现
直接来看一个例子:
常规种植条件下某玉米品的平均穗重为 300g 。现在采用根外施肥(即将肥料制成液体养分,喷洒到玉米的叶面)后,调查了 20 个玉米棒 ,其穗重如表 1所示。问:改用叶面施肥后,穗重是 否显著增加了 ?(置信度为 95% 或者显著水平 α=0.05)
表1 20个玉米穗的重量(单位:g)
这是一个单尾测验,原假设和备择假设是:
原假设(无效假设):叶面施肥没有增产效果。
备择假设 :叶面施肥有增产效果
在SPSS中不能直接进行单尾测验,但是SPSS却可以输出t统计量的双侧检验相伴概率sig,将得到的相伴概率除以2,即得到单尾测验的相伴概率。将这个相伴概率与0.05进行比较,小于0.05则拒绝原假设。
单样本t检验的SPSS操作
首先将数据导入或者录入到spss中,然后依次 选择分析 <均值比较 <单样本t检验. 出现如下图所示的窗口。
将要检验的变量“穗重”选入到“检验变量”窗口,同时输入给定的用于对比的那个值,此处为常规种植条件下的穗重均值300.设置完毕后,点击确定。输出结果中的描述性统计这里就不讨论了,直接看t检验的结果。
你可以找一本统计学教材,对着t分布表,查看一下自由度为19,显著水平为0.05时,的双侧检验的t临界值,将这里得到的t值与那个临界值进行比较,如果这里的t值大于那个临界值,则拒绝原假设,这和p值小于0.05是等价的。
如下图所示,这里得到的双侧t检验相伴概率为0.006,那么单侧相伴概率为0.003,无论是双侧检验还是单侧检验,都可以拒绝原假设,考虑到叶面施肥后的穗重均值为300+7=307,因此认为叶面施肥能够极显著地增加穗重。
双侧检验与单侧检验
下面两张图片中,第一个图中黑色区域表示的是单侧检验的拒绝域。第二个图表示的双侧检验的拒绝域。同样是0.05的置信水平,双侧检验与单侧检验,临界值是不同的,因为黑色区域的位置不同,尽管它们的总面积是相等的。
进行大端单尾测验时,当计算得到的t统计量大于黑色区域与白色区域的临界位置对应的横轴值时,拒绝原假设。而这时,相伴概率也一定小于0.05,因此使用相伴概率和t临界值来决定原假设的取舍,原理本质上是一样的。只不过教材上进行案例讲解时,一般使用临界值,因为相伴概率计算困难。而统计软件一般直接给出相伴概率。(相伴概率即为p值或者spss输出的sig值。)
进行双侧检验时,计算得到的统计量落入两边任意一块黑色区域,就应该拒绝原假设。或者相伴概率小于0.05时,拒绝原假设。(黑色区域表示的是一个很小的概率,这样小的概率,通过一次试验一般是不会发生,如果发生,说明原假设有问题,说明真实的分布不是原假设成立时的这个分布,均值要改变才行,均值改变了才能符合被检验的数据,所以被检验的数据的均值与原来那个设定值是不同的。)
单侧检验的R语言实现
如果你一定要直接得出单侧检验的结果,那也不是没有办法,R语言可以直接得出单侧检验的结果。给出代码如下:
t_test01.1<-read.csv(file="D:/单样本t检验_玉米.csv",header=TRUE)
#载入数据
t.test(t_test01.1$穗重,
alternative =c("greater"),
mu =300, paired =FALSE,
conf.level =0.95
) #进行单样本t检验
输出结果如下
OneSample t-test
data: t_test01.1$穗重
t=3.1239, df=19, p-value =0.002794
alternative hypothesis: true mean is greater than 300
95 percent confidence interval:
303.1254 Inf
sample estimates:
mean of x
307
得到 p-value =0.002794<0.05,拒绝原假设,选择备择假设:alternative hypothesis: true mean is greater than 300。(实际均值大于300)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30