将基因组数据分类并写出文件,python,awk,R data.table速度PK
由于基因组数据过大,想进一步用R语言处理担心系统内存不够,因此想着将文件按染色体拆分,发现python,awk,R 语言都能够非常简单快捷的实现,那么速度是否有差距呢,因此在跑几个50G的大文件之前,先用了244MB的数据对各个脚本进行测试,并且将其速度进行对比。
首先是awk处理,awk进行的是逐行处理,具有自己的语法,具有很大的灵活性,一行代码解决,用时24S,
1 #!/usr/bin/sh
2 function main()
3 {
4 start_tm=date
5 start_h=`$start_tm +%H`
6 start_m=`$start_tm +%M`
7 start_s=`$start_tm +%S`
8 awk -F $sep '{print $1","$2","$3 >> "'"$inputfile"'""_"$1}' $inputfile
9 end_tm=date
10 end_h=`$end_tm +%H`
11 end_m=`$end_tm +%M`
12 end_s=`$end_tm +%S`
13 use_tm=`echo $end_h $start_h $end_m $start_m $end_s $start_s | awk '{ print ($1 - $2),"h",($3-$4),"m",($5-$6),"s"}'`
14 echo "Finished in "$use_tm
15 }
16
17
18 if [ $# == 2 ]; then
19 sep=$1
20 inputfile=$2
21 main
22 else
23 echo "usage: SplitChr.sh sep inputfile"
24 echo "eg: SplitChr.sh , test.csv"
25 fi
接下来是用python,python语言简单,书写方便。因此很快就实现了程序,同样逐行处理,比awk添加了一点细节,只挑出需要的染色体。用时19.9秒。
1 #!/usr/bin/python
2 import sys
3 import time
4 def main():
5 if len(sys.argv)!=3:
6 print "usage : SplitChr sep inputfile eg: SplitChr ',' test.txt"
7 exit()
8 sep=sys.argv[1]
9 filename=sys.argv[2]
10 f=open(filename,'r')
11 header=f.readline()
12 if len(header.split(sep))<2:
13 print "The sep can't be recongnized !"
14 exit()
15 chrLst=range(1,23)
16 chrLst.extend(["X","Y"])
17 chrLst=["chr"+str(i) for i in chrLst]
18 outputdic={}
19 for chrI in chrLst:
20 output=filename+"_"+chrI
21 outputdic[chrI]=open(output,'w')
22 outputdic[chrI].write(header)
23 for eachline in f:
24 tmpLst=eachline.strip().split(sep)
25 tmpChr=tmpLst[0]
26 if tmpChr in chrLst:
27 outputdic[tmpChr].write(eachline)
28 end=time.clock()
29 print "read: %f s" % (end - start)
30
31
32
33 if __name__=='__main__':
34 start=time.clock()
35 main()
最后用R语言data.table包进行处理,data.table是data.frame的高级版,在速度上作了很大的改进,但是和awk和python相比,具有优势吗?
1 #!/usr/bin/Rscript
2 library(data.table)
3 main <- function(filename,sep){
4 started.at <- proc.time()
5 arg <- commandArgs(T)
6 sep <- arg[1]
7 inputfile <- arg[2]
8 dt <- fread(filename,sep=sep,header=T)
9 chrLst <- lapply(c(1:22,"X","Y"),function(x)paste("chr",x,sep=""))
10 for (chrI in chrLst){
11 outputfile <- paste(filename,"_",chrI,sep="")
12 fwrite(dt[.(chrI),,on=.(chr)],file=outputfile,sep=sep)
13 }
14 cat ("Finished in",timetaken(started.at),"\n")
15 }
16
17 arg <- commandArgs(T)
18 if (length(arg)==2){
19 sep <- arg[1]
20 filename <- arg[2]
21 main(filename,sep)
22 }else{
23 cat("usage: SplitChr.R sep inputfile eg: SplitChr.R '\\t' test.csv","\n")
24 }
用时10.6秒,发现刚刚读完数据,立刻就处理和写出完毕,处理和写出时间非常短,因此总体用时较短。
总结
虽然都是逐行处理,但由上述结果猜测awk内部运行并没有python快,但awk书写一行代码搞定,书写速度快,至于python比data.table慢,猜测原因是R data.table用C语言写,并且运用多线程写出,hash读取,传地址各种方式优化速度的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17