云计算和大数据助智能家居腾飞
智能家居落地不易,腾飞更难。智能家居落地需要解决好稳定性、兼容性、安全性以及价格高等问题,而要实现腾飞不仅要首先解决这些问题,而且还要借助新技术来突破自我,实现质变。就目前来说,能够助智能家居腾飞的新技术非云计算和大数据莫属。
早前,智能家居相对简单,不能与当下同日而语。在设备数量上,几乎不强调设备的“全”,常见的设备只是智能家居单品,或者是局部系统,抑或是几件简单产品的集成;在功能上,功能本身较“死”,基本上一成不变,设备出场后就不能进行自我提高,更无需提自主分析和学习能力;在技术,设备联网能力有限,并且多采用有线安装,不但需要“大动干戈”,而且还大大限制设备后续的进一步扩展。
在人们对智能需求有限的情况下,早前的智能家居即便很简单依然让人觉得“高大上”,并且基本不会出现问题,但是虽然生活水平的提高,早前的智能家居逐渐变得落后,甚至沦为“伪智能”。智能家居单品的功能虽有提升,但智能效果所覆盖的范围十分有限,难以迎合消费者整体智能的需求。即便智能家居发生了有线向无线的转变,也只是安装等方式的改变,不能实现所谓的真正的智能。现在的主要问题是,智能家居不但要“连”,而且还灵活地“互连”,实现设备之间互通互控。
事实上,智能家居还面临着一个更为严重的问题:随着设备的不断增多,设备运行过程中所产生的数据呈几何级增长,形成巨量数据,也就是我们所说的大数据。中国联通网络技术研究院首席专家唐雄燕曾表示,“大数据时代,每个人都是数据的贡献者。预计到2020年一个中国普通家庭一年产生的数据相当于半个国家图书馆的信息储量。”这种数据来源不但包括利用互联网搜索信息,用微信、QQ维护社交关系和上网购物,而且还包括用户对智能照明、智能摄像头、家电控制等智能设备的使用。
大数据源源不断的产生,对一般的智能家居设备来说是一个巨大的压力,这种情况并不难理解,我们不妨以智能摄像头为例加以说明。通常情况下智能摄像头属于常运行设备,也就是说它实实刻刻都在记录,而所记录的画面都将存储起来,可是如果它的存储能力有限,后面的画面信息只能依靠对先前的进行覆盖来继续存储,这种情况理所当然会造成记录内容回看的困扰,同时这也意味着智能摄像头所谓的记录、存储、分析、回看等功能方面并不是太完善。
如何处理大数据呢?再分析这个问题之前,我们更应该明确家庭大数据对智能设备的意义。如果说我们认为通过智能家居设备会产生巨量数据,而这些数据又会进一步限制这些智能设备功能的发挥,那就大错特错了。相反,智能家居智能功能的实现实际上靠的就是对数据的处理能力,如果数据的量足够多,智能家居设备的分析能力也足够强,那么它们也就越有“智慧”,所达到的智能效果也就越佳。
回到前面所说的如何处理大数据的问题,毫无疑云计算可担重任。智能家居由原来的“设备端+移动终端”的模式(传统模式)向“设备端+云端+移动终端”(新模式,包括物联传感等不少企业已是这种模式)转变,所带来的最大变化是数据处理的能力的增强。在这个过程中,大数据的处理由云计算来完成,而不是由智能设备来完成,这样智能设备的处理数据压力将得到转移和缓解,大大提高设备的工作效率。
百度总裁张亚勤认为,“云计算和大数据是一个硬币的两面,云计算是大数据的IT基础,而大数据是云计算的一个杀手级应用。云计算是大数据成长的驱动力,而另一方面,越来越多的数据需要云计算去处理,所以云计算与大数据是相辅相成的。”可见,云计算不但是大数据存储、分析、准确提取的重要工具,还是设备进行深度学习的引擎,换句话说,通过云计算和大数据是可以让智能家居设备更加“聪明”的。
不过,云计算和大数据具备助飞智能家居的能力,但也同样会产生一定的问题,其中安全仍是最主要考验。接下来,在运用好云计算和大数据技术的基础上,物联网设备(智能家居、智能穿戴等)商应该考虑如何进一步加强相关设备的安全性,否则智能家居腾飞的难度将会更大。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20