进入大数据行业的公司必须了解这六个问题
之前参加了IC咖啡举办的Italk活动,听取的有关大数据公司和产业机构的讲座,因此萌生出一个写文章的冲动,想对目前大数据产业中的一些错误现象进行讨论.
陈宇认为大数据是哲学层面上的问题,属于统计学范畴,部分揭示了大数据产业的本质,但是实际上大数据这个概念自身就有着不同的诠释。利用数据进行军事分析,产品定位,交通管理,风险管理,精准营销等等,其实在几十年前就有了。最早的保险产品就是来源于偶然事件的概率分析,其参考历史数据分析,依据计算出的概率来,来对保险产品进行定价。中国古代的军事学家孙膑在战争中,通过逐步减少行军灶坑来迷惑对手,利用其师弟庞涓对数据信任,制造其带领军队溃败的假象,最后在对方轻敌冒进的前提下,突袭了对手,赢得了战争胜利。因此数据分析其实在很久远的古代就存在了。为什么过去的数据分析换成了时髦的名称大数据了呢?
相对于过去的数据,我们来讨论大数据的含义:
1)过于一些记录是以模拟形式出现的,或者以数据形式出现但是存贮在本地,不是公开数据资源,没有开放给互联网用户,例如音乐、照片、视频、监控录像等影音资料。现在这些数据不但数据量巨大,并且放到了互联网上,开放给整个互联网用户,其数量之大是前所未有了。举个例子Facebook每天有18亿张照片上传或被传播,形成了海量的开放数据。
2)移动互联网出现后,移动设备的很多传感器收集了大量的用户点击行为数据,已知iphone有3个传感器,三星有6个传感器。它们每天产生了大量的点击数据,这些数据被某些公司所有拥有,形成用户大量行为数据。
3)移动地图出现后,例如高德、百度、google地图,其产生了大量的数据流数据,这些数据不同于传统数据,传统数据代表一个属性或一个度量值,但是这些地图产生的流数据代表着一种行为、一种习惯,这些流数据经频率分析后会产生巨大的商业价值。基于地图产生的数据流是一种新型的数据类型,在过去是不存在的。
4)进入了社交网络的年代后,互联网行为主要由用户参与创造,因此有大量的互联网用户创造出大量的社交行为数据。这些数据是过去不曾想像的,是海量的。某些数据代表特定人群的特点和个性。
5)电子商户崛起带来了大量网上交易行为,其产生了大量的交易数据,包含支付行为,查询行为,物流运输、购买行为等等,产生了海量的信息流和资金流数据。
6)传统的互联网入口转向搜索引擎之后,用户的搜索行为和提问行为产生了海量数据。单位存贮价格的下降也为存储这些数据提供了技术上的可能。
现在我们所指的大数据不同与过去传统的数据,其产生方式、存储载体、访问方式、表现形式、来源特点等都同传统的数据不同。简单的讲大数据范围更接近于某个群体行为特点数据,全面的数据。移动互联网和社交网络创造出来了大量的行为数据。
大数据产业是朝阳产业,任何一个想进入此产业的公司和个人向先要思考好以下几个问题。
1数据在哪里?
2哪些是有用的数据?
3如何分析这些数据?(如何将非结构化数据变成结构化数据)
4需要用数据解决的问题是什么?或者是分析后数据后提出的观点是什么?
5如何展现你的数据和推理?(图形、图表、曲线、分值、评价、归类、等级、概率、模型等等,大数据要么解决目前的问题,要么支持你的假设,要们引导出另一个未知观点)
6重新审核数据分析的逻辑和数据来源,是否可以展现一份可以经过推敲的数据分析报告?
如果以上的问题都可以解决,这时你可以进入正产业。中国的大数据产业近几年来逐渐升温,政府有投入了大量的资金。目前正在困扰很多大数据公司的问题是数据在哪里?目前我们了解的大数据来源主要有以下几个方面;
1)电信运行商(由于其提供互联网接入服务,互联网行为记录数据)
2)第三方支付(支付行为产生的资金流和信息流数据)
3)电商平台(阿里为代表,几亿的淘宝用户和2万亿的网络购买行为的数据)
4)社交平台(微信和微博为代表的社区网络产生的互联网行为数据)
5)电子游戏平台(大量用户产生的数据)
6)移动入口产生大量数据(包含移动APP,导航,地图等)
7)搜索引擎上产生的数据
除了这些新兴的大数据来源,其实在传统行业,由于很多数据是不能公开和共享的,还有很多大数据来源没有被重点关注。例如:
1)政府掌握的经济社会的统计数据
2)金融行业内部交易和支付数据
3)医疗行业的病历数据
4)教育行业的考试数据
5)交通运输行业物流数据
6)科学研究方面大量重复的论文、专利、科研实验的数据
7)生物工程、农林牧渔等方面的数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13