1文本挖掘定义
文本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法。文本挖掘中最重要最基本的应用是实现文本的分类和聚类,前者是有监督的挖掘算法,后者是无监督的挖掘算法。
2文本挖掘步骤
1)读取数据库或本地外部文本文件
2)文本分词
2.1)自定义字典
2.2)自定义停止词
2.3)分词
2.4)文字云检索哪些词切的不准确、哪些词没有意义,需要循环2.1、2.2和 2.3步骤
3)构建文档-词条矩阵并转换为数据框
4)对数据框建立统计、挖掘模型
5)结果反馈
3文本挖掘所需工具
本次文本挖掘将使用R语言实现,除此还需加载几个R包,它们是tm包、tmcn包、Rwordseg包和wordcloud包。
4实战
本文对该数据集做了整合,将各个主题下的新闻汇总到一张csv表格中,数据格式如下图所示:
具体数据可至文章后面的链接。
#加载所需R包 library(tm) library(Rwordseg) library(wordcloud) library(tmcn) #读取数据 mydata <- read.table(file = file.choose(), header = TRUE, sep = ',', stringsAsFactors = FALSE) str(mydata)
接下来需要对新闻内容进行分词,在分词之前需要导入一些自定义字典,目的是提高切词的准确性。由于文本中涉及到军事、医疗、财经、体育等方面的内容,故需要将搜狗字典插入到本次分析的字典集中。
#添加自定义字典 installDict(dictpath = 'G:\\dict\\财经金融词汇大全【官方推荐】.scel', dictname = 'Caijing', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\军事词汇大全【官方推荐】.scel', dictname = 'Junshi', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\篮球【官方推荐】.scel', dictname = 'Lanqiu', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\旅游词汇大全【官方推荐】.scel', dictname = 'Lvyou', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\汽车词汇大全【官方推荐】.scel', dictname = 'Qiche1', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\汽车频道专用词库.scel', dictname = 'Qiche2', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\医学词汇大全【官方推荐】.scel', dictname = 'Yixue', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\足球【官方推荐】.scel', dictname = 'Zuqiu', dicttype = 'scel') #查看已安装的词典 listDict()
如果需要卸载某些已导入字典的话,可以使用uninstallDict()函数。
分词前将中文中的英文字母统统去掉。
#剔除文本中含有的英文字母 mydata$Text <- gsub('[a-zA-Z]','',mydata$Text) #分词 segword <- segmentCN(strwords = mydata$Text) #查看第一条新闻分词结果 segword[[1]]
图中圈出来的词对后续的分析并没有什么实际意义,故需要将其剔除,即删除停止词。
#创建停止词 mystopwords <- read.table(file = file.choose(), stringsAsFactors = FALSE) head(mystopwords) class(mystopwords) #需要将数据框格式的数据转化为向量格式 mystopwords <- as.vector(mystopwords[,1]) head(mystopwords)
停止词创建好后,该如何删除76条新闻中实际意义的词呢?下面通过自定义删除停止词的函数加以实现。
#自定义删除停止词的函数 removewords <- function(target_words,stop_words){ target_words = target_words[target_words%in%stop_words==FALSE] return(target_words) } segword2 <- sapply(X = segword, FUN = removewords, mystopwords) #查看已删除后的分词结果 segword2[[1]]
相比与之前的分词结果,这里瘦身了很多,剔除了诸如“是”、“的”、“到”、“这”等无意义的次。
判别分词结果的好坏,最快捷的方法是绘制文字云,可以清晰的查看哪些词不该出现或哪些词分割的不准确。
#绘制文字图 word_freq <- getWordFreq(string = unlist(segword2)) opar <- par(no.readonly = TRUE) par(bg = 'black') #绘制出现频率最高的前50个词 wordcloud(words = word_freq$Word, freq = word_freq$Freq, max.words = 50, random.color = TRUE, colors = rainbow(n = 7)) par(opar)
很明显这里仍然存在一些无意义的词(如说、日、个、去等)和分割不准确的词语(如黄金周切割为黄金,医药切割为药等),这里限于篇幅的原因,就不进行再次添加自定义词汇和停止词。
#将已分完词的列表导入为语料库,并进一步加工处理语料库 text_corpus <- Corpus(x = VectorSource(segword2)) text_corpus
此时语料库中存放了76条新闻的分词结果。
#去除语料库中的数字 text_corpus <- tm_map(text_corpus, removeNumbers) #去除语料库中的多余空格 text_corpus <- tm_map(text_corpus, stripWhitespace) #创建文档-词条矩阵 dtm <- DocumentTermMatrix(x = text_corpus, control = list(wordLengths = c(2,Inf))) dtm
从图中可知,文档-词条矩阵包含了76行和7939列,行代表76条新闻,列代表7939个词;该矩阵实际上为稀疏矩阵,其中矩阵中非0元素有11655个,而0元素有591709,稀疏率达到98%;最后,这7939个词中,最频繁的一个词出现在了49条新闻中。
由于稀疏矩阵的稀疏率过高,这里将剔除一些出现频次极地的词语。
#去除稀疏矩阵中的词条 dtm <- removeSparseTerms(x = dtm, sparse = 0.9) dtm
这样一来,矩阵中列大幅减少,当前矩阵只包含了116列,即116个词语。
为了便于进一步的统计建模,需要将矩阵转换为数据框格式。
#将矩阵转换为数据框格式 df <- as.data.frame(inspect(dtm)) #查看数据框的前6行(部分) head(df)
聚类分析是文本挖掘的基本应用,常用的聚类算法包括层次聚类法、划分聚类法、EM聚类法和密度聚类法。
这里使用层次聚类中的McQuitty相似分析法实现新闻的聚类。
#计算距离 d <- dist(df) #层次聚类法之McQuitty相似分析法 fit1 <- hclust(d = d, method = 'mcquitty') plot(fit1) rect.hclust(tree = fit1, k = 7, border = 'red')
这里的McQuitty层次聚类法效果不理想,类与类之间分布相当不平衡,我想可能存在三种原因:
1)文章的主干关键词出现频次不够,使得文章没能反映某种主题;
2)分词过程中没有剔除对建模不利的干扰词,如中国、美国、公司、市场、记者等词语;
3)没能够准确分割某些常用词,如黄金周。
5总结
所以在实际的文本挖掘过程中,最为困难和耗费时间的就是分词部分,既要准确分词,又要剔除无意义的词语,这对文本挖掘者是一种挑战。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29