大数据时代 业务运维驱动下的企业变革
从信息化时代起,企业一直在试图发现业务数据中深藏的商业价值,并为此诞生了数据挖掘、商业智能、BPM、BSM等诸多技术,然而互联网时代的到来,专为封闭生产环境而生的信息化系统,已经无法满足企业高速增长的互联网开放业务和随着而来的海量信息的处理需求。互联网+最大的价值在于“连接”,企业根据原有生产、经营模式构建起来的IT系统,显然无法满足互联网用户的连接和需求,互联网+转型的难点也正在与此。如何在企业现有IT架构的基础上,快速实现前端互联网用户与后端业务系统的有效连接,构建起全新的、基于大数据分析的业务生态系统呢?
传统企业在进行互联网+转型的过程中,用户将通过网站、APP与企业内部IT系统进行连接。以金融和零售领域的典型业务场景为例,过去消费者要到门店通过营业人员完成交易,而现在只需要在手机上进行简单操作就可以搞定一切。随之而来的是业务的交付不断向互联网迁移,同时用户体验随着业务系统的转移而前置,用户对企业服务的感受不再由前台业务人员决定,而是由产品使用过程中的应用体验决定,IT运维部门成为互联网经济中最能准确感知用户体验的部门,运维与业务的结合成为确保企业进行互联网+成功转型的支撑点。
如今,虚拟化、容器、Serverless、SDN等技术的应用和第三方SaaS服务的普及,让曾经大量牵扯IT部门精力的基础架构运维,逐渐被敏捷、高效的自动化运维所取代,越来越多的运维人员被释放出来,有充足的时间和精力去关注业务。技术运维部门的工作重心和工作方式随之发生变化,由过去专注于IT基础资源、网络质量运行指标监控,向关注业务指标和用户体验转变;故障的发现和解决也由被动巡查基础设施和网络问题来解决系统故障,转变为基于业务数据的风险评估分析,主动发现业务系统性能瓶颈,提前进行资源扩容规划,而这些变化都在促使IT部门从成本中心转变为企业的价值中心。
业务运维体系的建立是以企业现有业务系统为基础,需要IT部门从业务系统、IT支撑和业务管理三个维度对业务进行有效梳理。业务系统维度涵盖ERP系统、交易系统、订单系统、支付系统、物流系统、供应链系统等业务数据源;业务支撑维度则覆盖计算、存储等IT基础设施和网络、应用端的性能数据;业务管理维度则是从企业管理的视角,对业务流程、业务结果、业务效率和业务评价数据进行整合,而这三个业务维度共同组成满足企业发展需求的业务运维三维立体模型。
云智慧在构建基于大数据的业务运维解决方案时采用自下而上的方法,以业务系统、交易系统、订单系统、财务系统、物流系统、客户系统、监控系统为基础,通过大数据处理平台对来自底层的原始数据进行采集、存储、处理和趋势预测分析,最后通过数据可视化工具把分析结果以报表和趋势图的方式展现出来。
而要准确定位和分析因性能不佳对业务造成的不良影响,则需要以用户视角自上而下对业务流程的性能进行透视分析,首先通过应用监控对前端用户体验(包括用户来源、用户行为、用户感受、用户去向等)进行准确感知,然后结合业务拓扑、容量规划、交易分析和问题分析等方法确认受影响的业务环节和结果,最后通过应用性能产品对应用层和基础设施层性能瓶颈的准确定位和预警。
业务运维是IT运维与企业业务深度融合的产物,是运维管理在互联网+时代和云计算、大数据技术推动下的必然结果。云智慧面向产品全生命周期构建起以用户体验为核心,以业务价值为导向的业务运维支撑平台,运用业务运维监控指标和业务运维考评规范等科学方法论为指导对业务运维数据进行分层获取,整合用户投诉反馈、基于用户的业务质量监控数据,对业务影响和问题进行分析,得到SLA管理与绩效考评结果,并通过业务运维可视化工具呈现出来,最终实现应用性能的持续提升和业务健康高速增长。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13