数据挖掘有三大步骤
第一数据筹备,第二数据挖掘,第三结果表达和解释。数据筹备包含数据集成,数据选择,目标数据预处理。数据挖掘主要是对预处理后的数据进行挖掘。结果表达和解释即我们所说的结果可视化。
航空客户信息,包含会员档案信息和其他乘坐航班记录信息等。识别客户价值的最广泛的模型是通过RFM模型来识别出高价值的客户:
Recency: 最近消费时间间隔
Frequency: 消费频率
Monetary: 消费金额
然而,同样的消费金额的不同旅客对航空公司的价值不同,例如买长航线、低等仓的旅客和买短航线、高等仓的旅客消费金额相同 ,但是价值却是不同的。显然后者更有价值。因此这个指标可能不合适,故选择客户在一定时间内的飞行里程M和乘坐舱位所对应的折扣系数C。同时,因为航空公司会员的加入时间一定程度上可以影响客户价值,所以我们在航空公司客户价值分析模型中添加客户关系长度 L,当做区分客户价值的另一个指标,所以我们构建出LRFMC 模型。
L:会员入会时间距观测窗口结束的时间
R:客户最近一次乘坐公司分级距观测窗口结束的时间(月数)
F:客户在观测窗口内乘坐公司飞机的次数
M:客户在观测窗口内累计的飞行里程
C:客户在观测窗口内乘坐舱位所对应的折扣系数的平均值
使用聚类分析的方法把客户进行分类,并且分析客户群的特征,分析客户价值。
>>>>
第一步:数据抽取
(1)以 2014年3月31日为结束日期,选取宽度为两年的时间段作为分析观测窗口,抽取观测窗口内有乘机记录的所有顾客的详细资料形成历史数据。对于后来新增客户信息利用数据中最大的某个时间作为结束时间,采用同样的方法进行抽取,形成增量数据。
(2)根据末次飞行日期从航空公司系统内抽取 2012年4月1日至 2014年3月31 日内所有所有乘客的详细数据,共 62988 条记录。
>>>>
第二步:数据探索分析
在原始数据中存在票价为空的情况,票价为空值的数据有可能是航空客户未有乘机记录造成的。票价最小值为 0,折扣率最小值为 0,总飞行里程不为 0 的数据有可能是顾客使用 0 折机票或者是使用积分兑换的机票造成的。
>>>>
第三步:数据预处理
(1)数据清洗:从航空公司业务和数据挖掘建模需要考虑筛选出需要的数据。
A)不需要票价为空的数据。B)不需要票价为 0,平均折扣率不为 0,总飞行里程不为 0 的数据。
(2)属性规约。在原始数据中数据属性太多,我们只需要与LRFMC 模型相关的 6 个数据属性,所以我们需要删除不相关,弱相关和冗余的数据属性。
>>>>
第四步:建构模型
构建航空公司客户价值分析 LRFMC 模型
A:客户 K-Means 聚类分析
采用 K-Means 办法对所有客户数据进行聚类分析,将客户数据聚为 5 类。(具体情况具体分析,必须依据实际状况决定分几类)
B:客户价值分析
对聚类结果进行属性分析:顾客群 1 在 L、M 属性上最小;顾客群 2 在 R 属性上最大,在 F、M 上最小;客户群 3 在属性 F、M 上最大,在 R 上最小;客户群 4 在属性 L 上最大;客户群 5 在属性 C 上最大。
根据航空公司业务定义为五个等级的客户类别:重要保持客户,重要发展客户,重要挽留客户,普通价值客户,低价值客户。根据每种客户群类型的特征对客户群进行客户价值排名,以便获得高价值客户的信息。
C:模型应用
根据每种客户群的特征,可以采取更多个性化服务和营销策略。
随着数据量爆炸式的激增,数据挖掘技术与工具将得到更广泛的使用和发展。航空业的下一个大动作就在大数据和大数据挖掘分析领域。航空企业将通过数据分析了解旅客细分、旅客趋势,找到将信息变成吸引旅客、增强旅客忠诚度的产品和服务。
今天,航空业在大数据捕捉和分析领域还不是走在前面的行业,但十年后,航空业也许成为这一领域的领头羊。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20