
数据挖掘有三大步骤
第一数据筹备,第二数据挖掘,第三结果表达和解释。数据筹备包含数据集成,数据选择,目标数据预处理。数据挖掘主要是对预处理后的数据进行挖掘。结果表达和解释即我们所说的结果可视化。
航空客户信息,包含会员档案信息和其他乘坐航班记录信息等。识别客户价值的最广泛的模型是通过RFM模型来识别出高价值的客户:
Recency: 最近消费时间间隔
Frequency: 消费频率
Monetary: 消费金额
然而,同样的消费金额的不同旅客对航空公司的价值不同,例如买长航线、低等仓的旅客和买短航线、高等仓的旅客消费金额相同 ,但是价值却是不同的。显然后者更有价值。因此这个指标可能不合适,故选择客户在一定时间内的飞行里程M和乘坐舱位所对应的折扣系数C。同时,因为航空公司会员的加入时间一定程度上可以影响客户价值,所以我们在航空公司客户价值分析模型中添加客户关系长度 L,当做区分客户价值的另一个指标,所以我们构建出LRFMC 模型。
L:会员入会时间距观测窗口结束的时间
R:客户最近一次乘坐公司分级距观测窗口结束的时间(月数)
F:客户在观测窗口内乘坐公司飞机的次数
M:客户在观测窗口内累计的飞行里程
C:客户在观测窗口内乘坐舱位所对应的折扣系数的平均值
使用聚类分析的方法把客户进行分类,并且分析客户群的特征,分析客户价值。
>>>>
第一步:数据抽取
(1)以 2014年3月31日为结束日期,选取宽度为两年的时间段作为分析观测窗口,抽取观测窗口内有乘机记录的所有顾客的详细资料形成历史数据。对于后来新增客户信息利用数据中最大的某个时间作为结束时间,采用同样的方法进行抽取,形成增量数据。
(2)根据末次飞行日期从航空公司系统内抽取 2012年4月1日至 2014年3月31 日内所有所有乘客的详细数据,共 62988 条记录。
>>>>
第二步:数据探索分析
在原始数据中存在票价为空的情况,票价为空值的数据有可能是航空客户未有乘机记录造成的。票价最小值为 0,折扣率最小值为 0,总飞行里程不为 0 的数据有可能是顾客使用 0 折机票或者是使用积分兑换的机票造成的。
>>>>
第三步:数据预处理
(1)数据清洗:从航空公司业务和数据挖掘建模需要考虑筛选出需要的数据。
A)不需要票价为空的数据。B)不需要票价为 0,平均折扣率不为 0,总飞行里程不为 0 的数据。
(2)属性规约。在原始数据中数据属性太多,我们只需要与LRFMC 模型相关的 6 个数据属性,所以我们需要删除不相关,弱相关和冗余的数据属性。
>>>>
第四步:建构模型
构建航空公司客户价值分析 LRFMC 模型
A:客户 K-Means 聚类分析
采用 K-Means 办法对所有客户数据进行聚类分析,将客户数据聚为 5 类。(具体情况具体分析,必须依据实际状况决定分几类)
B:客户价值分析
对聚类结果进行属性分析:顾客群 1 在 L、M 属性上最小;顾客群 2 在 R 属性上最大,在 F、M 上最小;客户群 3 在属性 F、M 上最大,在 R 上最小;客户群 4 在属性 L 上最大;客户群 5 在属性 C 上最大。
根据航空公司业务定义为五个等级的客户类别:重要保持客户,重要发展客户,重要挽留客户,普通价值客户,低价值客户。根据每种客户群类型的特征对客户群进行客户价值排名,以便获得高价值客户的信息。
C:模型应用
根据每种客户群的特征,可以采取更多个性化服务和营销策略。
随着数据量爆炸式的激增,数据挖掘技术与工具将得到更广泛的使用和发展。航空业的下一个大动作就在大数据和大数据挖掘分析领域。航空企业将通过数据分析了解旅客细分、旅客趋势,找到将信息变成吸引旅客、增强旅客忠诚度的产品和服务。
今天,航空业在大数据捕捉和分析领域还不是走在前面的行业,但十年后,航空业也许成为这一领域的领头羊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07