商业数据挖掘的13种应用场景和主题,你懂几个
数据挖掘涉及到公司运营的方方面面,这包括对企业部门经营情况的评估、内部员工的管理、生产流程的监管、产品结构优化与新产品开发、财务成本优化、市场结构的分析和客户关系的管理。其中,关于客户与市场的数据分析是“重头戏”。
客户全生命周期管理
首先,以客户全生命周期管理为例介绍数据分析运用场景和挖掘主题,如下图所示。
1
发掘潜在客户(市场细分):
关于这个主题的分析,更多的是基于地区、性别和年龄段等粗粒度的指标,结合产品设计定位和目标客户群体进行匹配。比如,高档母婴产品的潜在客户应该是新建高档小区中的住户。这类分析是运用最早的,在广告投放、新店寻址等场景下大量使用。
2
客户获取:
当客户初次了解我们的产品和服务后,有可能会犹豫不决,拖延很久才可能真正成为我们的客户,而大部分客户在这期间会由于兴趣逐渐减退而最终流失。比如,信用卡新客户在填好个人信息,并收到信用卡后却迟迟没有开卡。这时就可以运用数据挖掘技术,对营销人员得到的客户基本信息进行一个初步筛选,找出购买倾向性较高的客户进行深度跟踪营销。
这么做既减少了人工成本,又降低了打扰客户的次数,从而减少了投诉。同时在与潜在客户的交流中,也会为其制定更个性化的产品或服务组合。
3
初始信用评分:
当客户最终购买我们的产品时,在涉及赊销情况的时候,就会用到初始信用评分技术。这是根据客户的性别、年龄以及居住场所等基本信息对客户的信用进行预判。这类情况不只在银行信贷中会遇到,在很多企业中都会遇到。
企业的应收账款就是一种自然的商业信用,建立好优秀的初始信用评分体系,可以使企业在不增大财务风险的情况下快速开拓市场。比如,IBM全球融资部(IGF)是一个为赊购买入IBM产品的小公司提供金融服务的部门,其在上世纪80年代开发的客户信用评分模型对开拓全球市场功不可没。现在这个技术也成为了提高客户满意度的一种方式。比如,中国移动的先付费客户的欠费额度和京东的“打白条”服务。
4
客户价值预测:
为了更好地为客户提供服务的同时增加企业利润,需要根据客户的基本信息进行其价值预测。其中价值既包括以消费水平为代表的直接价值,也包括客户口碑宣传的间接价值。 5.客户细分(市场细分):
5
客户细分(市场细分):
根据客户的基本信息,从人口学、工业统计信息、社会状态、产品使用行为等方面对客户进行细致的描述。这对分析客户类型结构、修正产品定位、满足细分群体需求开发新产品、提高客户满意度和分析客户需求变化趋势都是有意义的。
6
交叉销售:
分析产品之间的关联关系,发现产品销售中预期不到的模式。比如,“啤酒与尿布”的故事就是从客户在超市中的购物记录中获取的。这种技术目前被广泛运用在零售业、银行、保险等领域,大家对京东商场的推荐产品和淘宝的“猜你喜欢”两个模块应该有深刻的印象吧,这两个模块都是这个主题的运用。
7
产品精准营销:
这是客户价值提升的重要方面,目的在于扩大客户消费的范围。比如,公司开发了一款新产品,希望快速找到目标客户。这就可以通过分析现有客户的属性和产品消费行为,确定响应可能性最大的群体进行营销。
8
行为信用评分:
和初始信用评分的目的是一样的,这里分析的变量加入了客户产品消费行为的信息,这使得对客户信用的评估更为准确。比如,美国AT&T电信公司,其客户信用风险评级精确度明显高于一般的信用卡公司,这就是因为掌握了客户更多的通话、差旅等行为信息。
9
欺诈侦测:
也称为异常侦测。是对客户(包括内部员工)涉及洗钱、套现、盗用等异常行为进行的侦测,满足风险监管的需求。
10
客户保留:
有可能随着时间的变化,客户需求产生变化,如果不及时发现这种变化趋势,就会造成客户流失。客户保留的目的在于,及时发现客户在购买产品方面的行为变化和满意度情况,从而及时更换产品组合。比如,电信运营商发现客户的通话特征,从短途居多变为长途居多,而且从客户流失的模型中发现,有这种情况的客户流失的可能性很高。
这主要是由于客户不了解电信运营商的套餐类型,只是听说其他运营商的长途套餐更便宜造成的。那么客服人员就需要了解这类客户的需求,从而提供更合理的套餐类型。
11
客户关系网:
客户的亲友圈、工作圈和兴趣圈的信息对客户管理、营销和产品开发有重要的意义。比如,可以很好地定位客户所处的自然生命周期。如果是婚恋中的人,可以推荐与其品位相似的产品信息。而且通过对客户关系网络结构的分析,可以明确网络中的重要节点,这对关键人营销有重大意义。
12
流失客户时间判断:
通过对已经流失客户的存续时间进行分析。一方面可以预判现有客户流失的高危期,另一方面为提高不同类型客户的存续时间提供技术支持。
13
流失客户类型判断:
对流失客户的细分可以对改进产品和服务起到重要的指导作用。
结语
从上文的内容可以发现,数据挖掘主题可以归纳为营销、信用与违规识别。其中特别要提到的是,信用风险建模用到了数据挖掘中所有的方法,该模型是数据挖掘中的明珠,是目前方法论最完善的,其它主题建模往往只是该模型的简化版,掌握信用风险建模的流程才有可能站在巨人的肩膀上。
另一方面,信用风险管理不限于金融机构,只要涉及到交易行为就存在信用风险。高水平的信用风险管理可以刺激消费额并提高客户满意度,进而提高忠诚度。可以说学好信用风险建模,在商业数据挖掘领域中无往而不破。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16