如何将连续变量创建为变量
要创建分类变量inccat:
从数据编辑器窗口的菜单中选择:
转换> 可视离散化...
在初始的“可视离散化”对话框中,选择要为其创建新的离散化变量的刻度变量和/或 有序变量。离散化是指取两个或多个连续值并将其分组为同一类别。 由于可视离散化依赖于数据文件中的实际值以帮助您做出良好的离散化选择,因 而其需要先读取数据文件。如果您的数据文件包含大量个案,则完成此过程将需要一 段时间,因此,这一初始对话框还允许您限制要读取(“扫描”)的个案数。我们 的样本数据文件不需要此限制。尽管此数据文件包含6,000 多个案,但扫描这些 个案不需要太长时间。
将Household income in thousands [income] 从“变量”列表中拖放到“要离散的变量”列表中,然后单击继续。
在“可视离散化”主对话框中,选择“已扫描的变量列表”中的Household income in
thousands [income]。直方图显示了所选变量的分布(在此例中,分布严重偏斜)。
输入inccat2 作为新的离散化变量名称,输入Income category [in thousands] 作
为变量标签。
单击生成分割点。
选择等宽度间隔。
输入25 作为第一个分割点的位置,输入3 作为分割点数量,并输入25 作为宽度。离散化类别的数量比分割点数量多一个。因此在本示例中,新的离散化变量将具有四个类别,其中前三个类别中每个包含的范围为25(千),最后一个类别包含最高割点值75(千)以上的所有值。
单击应用。
网格中当前显示的值表示所定义的分割点,这些分割点是每个类别的上端点。直方图中的垂直线还指示了各分割点的位置。
默认情况下,这些分割点值将包含在相应的类别中。例如,第一个值25 将包含所有小于或等于25 的值。但在本示例中,我们希望这些类别对应于小于25、25–49、50–74 以及75 或更高。
在上端点组中,选择排除(<)。
然后单击生成标签。
这将自动为每个类别生成描述性值标签。由于为新的离散化变量指定的实际值只是从1开始的连续整数,因此这些值标签可能非常有用。还可以在网格中手动输入或更改分割点和标签,通过在直方图中拖放分割点线来更改分割点位置以及通过将分割点线拖出直方图来删除分割点。数据分析师培训
单击确定以创建新的离散化变量。
新变量将显示在数据编辑器中。由于该变量将添加到文件的末尾,因此显示在数据视图的最右侧一列,变量视图的最后一行中。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21