京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言学习之矩阵
很多人是在线性代数课学的矩阵,当时什么问题都没有,除了一个问题:学习矩阵到底有什么用呢?矩阵是一个集合,它里面可以存放很多对象,比如一个行就是一个对象(或者说记录),每一个对象又有很多(属性)列。如果把一组对象~属性表示成矩阵,我们就能很容易取出每个对象对应的某个属性了,并且根据线性代数方法考察两个对象之间的联系(相似性)。矩阵的行列数我们一般称作维数。
对于矩阵而言,我们当然想实现以下操作与功能:
矩阵的加减、乘除运算
矩阵的行列切片
最值的快速获取
线性代数运算
好在R语言中的矩阵可以很轻易帮我们实现这些功能,有了这一神兵利器,我们就可以游刃有余地操作应该算是数据分析的基本单位——矩阵了。
创建矩阵
R中直接调用函数matrix()可以快速自定义矩阵,下面一行命令可以快速创建一个4行3列的矩阵:
>a<-matrix(c(1:12),nrow=4,ncol=3,byrow=TRUE)
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
这里相当于先创建一个向量,再将其转化为一个4x3的矩阵,bynow=TRUE表示会按照把第一行排满,接着排第二行。
还有一些其它小技巧,比如有时候我们需要初始化一个矩阵,以便于后面对其进行赋值:
> a1<-matrix(0,3,4)
> a1
[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
矩阵行、列、元素的选取(切片)
取第一行第二列元素
> a[1,2]
[1] 2
取第一行元素,这与Matlab很相像
> a[1,]
[1] 1 2 3
取第一行除了第二个元素之外的元素
> a[1,-2]
[1] 1 3
取第一列元素
> a[,1]
[1] 1 4 7 10
取第一列除了第二个元素之外的元素
> a[-2,1]
[1] 1 7 10
矩阵全部元素
> a[,]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
矩阵的基本运算
这里创建一个新的矩阵b、c1,b与a的维数相同,c1的列、行数与a的行、列数分别相等,便于做实验。
> b<-matrix(c(13:24),nrow=4,ncol=3,byrow = TRUE)
> b
[,1] [,2] [,3]
[1,] 13 14 15
[2,] 16 17 18
[3,] 19 20 21
[4,] 22 23 24
> c1<-matrix(c(13:24),nrow=3,ncol=4,byrow = TRUE)
> c1
[,1] [,2] [,3] [,4]
[1,] 13 14 15 16
[2,] 17 18 19 20
[3,] 21 22 23 24
获取矩阵维数
> dim(a)
[1] 4 3
加减法运算
矩阵的加减法运算表示两个矩阵对应元素分别进行加减法运算,返回两个矩阵对应元素分别进行加减法运算的矩阵。当然了,矩阵加减法运算前提是两个矩阵的维数必须一样,否则会报错。
> a+b
[,1] [,2] [,3]
[1,] 14 16 18
[2,] 20 22 24
[3,] 26 28 30
[4,] 32 34 36
乘除法运算
矩阵的乘除法运算表示两个矩阵对应元素分别进行乘除法运算,返回两个矩阵对应元素分别进行乘除法运算的矩阵。当然了,矩阵乘除法运算前提是两个矩阵的维数必须一样,否则会报错。
> a*b
[,1] [,2] [,3]
[1,] 13 28 45
[2,] 64 85 108
[3,] 133 160 189
[4,] 220 253 288
还有就是矩阵的乘法,要求是前面矩阵的列数等于后面矩阵的列数,返回一个左边矩阵行数x右边矩阵列数的矩阵。
> a%*%c1
[,1] [,2] [,3] [,4]
[1,] 110 116 122 128
[2,] 263 278 293 308
[3,] 416 440 464 488
[4,] 569 602 635 668
线性代数运算
R语言提供了很多用于线性代数运算的函数,常用的列出如下:
eigen() #求特征值和特征向量
solve() #求逆矩阵
chol() #Choleski分解
svd() #奇异值分解
qr() #QR分解
det() #求行列式
dim() #给出行列数
t() #矩阵转置
矩阵的拼接
R语言矩阵的拼接主要用到两个函数,rbind()、cbind()
按行拼接要求两个矩阵列数要相同rbind()
> rbind(a,b)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
[5,] 13 14 15
[6,] 16 17 18
[7,] 19 20 21
[8,] 22 23 24
按列拼接要求两个矩阵行数要相同cbind()
> cbind(c1,matrix(c(1:6),nrow = 3,byrow = TRUE))
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 13 14 15 16 1 2
[2,] 17 18 19 20 3 4
[3,] 21 22 23 24 5 6
其它函数的灵活结合
矩阵相关计算求法还可以灵活应用其它函数,比如求和函数sum(),平均值函数mean(),最值函数max()等。
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
> max(a)
[1] 12
第一行最大值
>max(a[1,])
[1] 3
> max(a[,1])
[1] 10
对第一行求和
> sum(a[1,])
[1] 6
> mean(a[,1])
[1] 5.5
还有就是结合apply()函数,后面会讲到。
用法,举个例子。apply(Matrix,1,FUN=mean),这里,FUN=mean计算矩阵Matrix每一行的平均值,以向量的形式返回,中间的参数‘1’表示求每一行均值,如果是‘2’,表示求每一列均值
比如:
求a每一行平均值
> apply(a,1,mean)
[1] 2 5 8 11
对a每一列分别求和
> apply(a,2,sum)
[1] 22 26 30
好了,关于矩阵就讲到这里,希望对你们有用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11