
R语言学习之矩阵
很多人是在线性代数课学的矩阵,当时什么问题都没有,除了一个问题:学习矩阵到底有什么用呢?矩阵是一个集合,它里面可以存放很多对象,比如一个行就是一个对象(或者说记录),每一个对象又有很多(属性)列。如果把一组对象~属性表示成矩阵,我们就能很容易取出每个对象对应的某个属性了,并且根据线性代数方法考察两个对象之间的联系(相似性)。矩阵的行列数我们一般称作维数。
对于矩阵而言,我们当然想实现以下操作与功能:
矩阵的加减、乘除运算
矩阵的行列切片
最值的快速获取
线性代数运算
好在R语言中的矩阵可以很轻易帮我们实现这些功能,有了这一神兵利器,我们就可以游刃有余地操作应该算是数据分析的基本单位——矩阵了。
创建矩阵
R中直接调用函数matrix()可以快速自定义矩阵,下面一行命令可以快速创建一个4行3列的矩阵:
>a<-matrix(c(1:12),nrow=4,ncol=3,byrow=TRUE)
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
这里相当于先创建一个向量,再将其转化为一个4x3的矩阵,bynow=TRUE表示会按照把第一行排满,接着排第二行。
还有一些其它小技巧,比如有时候我们需要初始化一个矩阵,以便于后面对其进行赋值:
> a1<-matrix(0,3,4)
> a1
[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
矩阵行、列、元素的选取(切片)
取第一行第二列元素
> a[1,2]
[1] 2
取第一行元素,这与Matlab很相像
> a[1,]
[1] 1 2 3
取第一行除了第二个元素之外的元素
> a[1,-2]
[1] 1 3
取第一列元素
> a[,1]
[1] 1 4 7 10
取第一列除了第二个元素之外的元素
> a[-2,1]
[1] 1 7 10
矩阵全部元素
> a[,]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
矩阵的基本运算
这里创建一个新的矩阵b、c1,b与a的维数相同,c1的列、行数与a的行、列数分别相等,便于做实验。
> b<-matrix(c(13:24),nrow=4,ncol=3,byrow = TRUE)
> b
[,1] [,2] [,3]
[1,] 13 14 15
[2,] 16 17 18
[3,] 19 20 21
[4,] 22 23 24
> c1<-matrix(c(13:24),nrow=3,ncol=4,byrow = TRUE)
> c1
[,1] [,2] [,3] [,4]
[1,] 13 14 15 16
[2,] 17 18 19 20
[3,] 21 22 23 24
获取矩阵维数
> dim(a)
[1] 4 3
加减法运算
矩阵的加减法运算表示两个矩阵对应元素分别进行加减法运算,返回两个矩阵对应元素分别进行加减法运算的矩阵。当然了,矩阵加减法运算前提是两个矩阵的维数必须一样,否则会报错。
> a+b
[,1] [,2] [,3]
[1,] 14 16 18
[2,] 20 22 24
[3,] 26 28 30
[4,] 32 34 36
乘除法运算
矩阵的乘除法运算表示两个矩阵对应元素分别进行乘除法运算,返回两个矩阵对应元素分别进行乘除法运算的矩阵。当然了,矩阵乘除法运算前提是两个矩阵的维数必须一样,否则会报错。
> a*b
[,1] [,2] [,3]
[1,] 13 28 45
[2,] 64 85 108
[3,] 133 160 189
[4,] 220 253 288
还有就是矩阵的乘法,要求是前面矩阵的列数等于后面矩阵的列数,返回一个左边矩阵行数x右边矩阵列数的矩阵。
> a%*%c1
[,1] [,2] [,3] [,4]
[1,] 110 116 122 128
[2,] 263 278 293 308
[3,] 416 440 464 488
[4,] 569 602 635 668
线性代数运算
R语言提供了很多用于线性代数运算的函数,常用的列出如下:
eigen() #求特征值和特征向量
solve() #求逆矩阵
chol() #Choleski分解
svd() #奇异值分解
qr() #QR分解
det() #求行列式
dim() #给出行列数
t() #矩阵转置
矩阵的拼接
R语言矩阵的拼接主要用到两个函数,rbind()、cbind()
按行拼接要求两个矩阵列数要相同rbind()
> rbind(a,b)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
[5,] 13 14 15
[6,] 16 17 18
[7,] 19 20 21
[8,] 22 23 24
按列拼接要求两个矩阵行数要相同cbind()
> cbind(c1,matrix(c(1:6),nrow = 3,byrow = TRUE))
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 13 14 15 16 1 2
[2,] 17 18 19 20 3 4
[3,] 21 22 23 24 5 6
其它函数的灵活结合
矩阵相关计算求法还可以灵活应用其它函数,比如求和函数sum(),平均值函数mean(),最值函数max()等。
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
> max(a)
[1] 12
第一行最大值
>max(a[1,])
[1] 3
> max(a[,1])
[1] 10
对第一行求和
> sum(a[1,])
[1] 6
> mean(a[,1])
[1] 5.5
还有就是结合apply()函数,后面会讲到。
用法,举个例子。apply(Matrix,1,FUN=mean),这里,FUN=mean计算矩阵Matrix每一行的平均值,以向量的形式返回,中间的参数‘1’表示求每一行均值,如果是‘2’,表示求每一列均值
比如:
求a每一行平均值
> apply(a,1,mean)
[1] 2 5 8 11
对a每一列分别求和
> apply(a,2,sum)
[1] 22 26 30
好了,关于矩阵就讲到这里,希望对你们有用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13