R语言学习之矩阵
很多人是在线性代数课学的矩阵,当时什么问题都没有,除了一个问题:学习矩阵到底有什么用呢?矩阵是一个集合,它里面可以存放很多对象,比如一个行就是一个对象(或者说记录),每一个对象又有很多(属性)列。如果把一组对象~属性表示成矩阵,我们就能很容易取出每个对象对应的某个属性了,并且根据线性代数方法考察两个对象之间的联系(相似性)。矩阵的行列数我们一般称作维数。
对于矩阵而言,我们当然想实现以下操作与功能:
矩阵的加减、乘除运算
矩阵的行列切片
最值的快速获取
线性代数运算
好在R语言中的矩阵可以很轻易帮我们实现这些功能,有了这一神兵利器,我们就可以游刃有余地操作应该算是数据分析的基本单位——矩阵了。
创建矩阵
R中直接调用函数matrix()可以快速自定义矩阵,下面一行命令可以快速创建一个4行3列的矩阵:
>a<-matrix(c(1:12),nrow=4,ncol=3,byrow=TRUE)
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
这里相当于先创建一个向量,再将其转化为一个4x3的矩阵,bynow=TRUE表示会按照把第一行排满,接着排第二行。
还有一些其它小技巧,比如有时候我们需要初始化一个矩阵,以便于后面对其进行赋值:
> a1<-matrix(0,3,4)
> a1
[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
矩阵行、列、元素的选取(切片)
取第一行第二列元素
> a[1,2]
[1] 2
取第一行元素,这与Matlab很相像
> a[1,]
[1] 1 2 3
取第一行除了第二个元素之外的元素
> a[1,-2]
[1] 1 3
取第一列元素
> a[,1]
[1] 1 4 7 10
取第一列除了第二个元素之外的元素
> a[-2,1]
[1] 1 7 10
矩阵全部元素
> a[,]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
矩阵的基本运算
这里创建一个新的矩阵b、c1,b与a的维数相同,c1的列、行数与a的行、列数分别相等,便于做实验。
> b<-matrix(c(13:24),nrow=4,ncol=3,byrow = TRUE)
> b
[,1] [,2] [,3]
[1,] 13 14 15
[2,] 16 17 18
[3,] 19 20 21
[4,] 22 23 24
> c1<-matrix(c(13:24),nrow=3,ncol=4,byrow = TRUE)
> c1
[,1] [,2] [,3] [,4]
[1,] 13 14 15 16
[2,] 17 18 19 20
[3,] 21 22 23 24
获取矩阵维数
> dim(a)
[1] 4 3
加减法运算
矩阵的加减法运算表示两个矩阵对应元素分别进行加减法运算,返回两个矩阵对应元素分别进行加减法运算的矩阵。当然了,矩阵加减法运算前提是两个矩阵的维数必须一样,否则会报错。
> a+b
[,1] [,2] [,3]
[1,] 14 16 18
[2,] 20 22 24
[3,] 26 28 30
[4,] 32 34 36
乘除法运算
矩阵的乘除法运算表示两个矩阵对应元素分别进行乘除法运算,返回两个矩阵对应元素分别进行乘除法运算的矩阵。当然了,矩阵乘除法运算前提是两个矩阵的维数必须一样,否则会报错。
> a*b
[,1] [,2] [,3]
[1,] 13 28 45
[2,] 64 85 108
[3,] 133 160 189
[4,] 220 253 288
还有就是矩阵的乘法,要求是前面矩阵的列数等于后面矩阵的列数,返回一个左边矩阵行数x右边矩阵列数的矩阵。
> a%*%c1
[,1] [,2] [,3] [,4]
[1,] 110 116 122 128
[2,] 263 278 293 308
[3,] 416 440 464 488
[4,] 569 602 635 668
线性代数运算
R语言提供了很多用于线性代数运算的函数,常用的列出如下:
eigen() #求特征值和特征向量
solve() #求逆矩阵
chol() #Choleski分解
svd() #奇异值分解
qr() #QR分解
det() #求行列式
dim() #给出行列数
t() #矩阵转置
矩阵的拼接
R语言矩阵的拼接主要用到两个函数,rbind()、cbind()
按行拼接要求两个矩阵列数要相同rbind()
> rbind(a,b)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
[5,] 13 14 15
[6,] 16 17 18
[7,] 19 20 21
[8,] 22 23 24
按列拼接要求两个矩阵行数要相同cbind()
> cbind(c1,matrix(c(1:6),nrow = 3,byrow = TRUE))
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 13 14 15 16 1 2
[2,] 17 18 19 20 3 4
[3,] 21 22 23 24 5 6
其它函数的灵活结合
矩阵相关计算求法还可以灵活应用其它函数,比如求和函数sum(),平均值函数mean(),最值函数max()等。
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
> max(a)
[1] 12
第一行最大值
>max(a[1,])
[1] 3
> max(a[,1])
[1] 10
对第一行求和
> sum(a[1,])
[1] 6
> mean(a[,1])
[1] 5.5
还有就是结合apply()函数,后面会讲到。
用法,举个例子。apply(Matrix,1,FUN=mean),这里,FUN=mean计算矩阵Matrix每一行的平均值,以向量的形式返回,中间的参数‘1’表示求每一行均值,如果是‘2’,表示求每一列均值
比如:
求a每一行平均值
> apply(a,1,mean)
[1] 2 5 8 11
对a每一列分别求和
> apply(a,2,sum)
[1] 22 26 30
好了,关于矩阵就讲到这里,希望对你们有用。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21