人工智能如何改变顾客消费体验
从市场营销到医疗,人工智能(AI)正在改变着一切。善解人意,交互式消费,创造更卓越的消费体验,这些在今年的假日营销中出现的新变化,拉开了人工智能为市场提供更好服务的序幕。
为了更好地了解人工智能对零售商的影响,我连线了IBM首任CMO,米歇尔·佩卢苏(Michelle Peluso)。佩卢苏在零售业有着资深经验,曾担任Gilt的首席执行官,也担任过花旗集团的全球消费营销和互联网的首席代表。佩卢苏关于Watson的人工智能将会如何改变零售商对消费者购物体验的影响提供了自己的见解。
维特勒:我们已经进入了假日购物季,现在影响市场营销的最大的变化是什么?
佩卢苏:这对于全体CMO、CEO来说,是一个激动人心的时刻。从6月份就开始为这个假日购物季筹备,运筹、采购、参与和拓展关系网这些工作早已开始——随着一切按部就班、渐入佳境,你就会看到它从计划书变成现实。多年来,我们见证了市场重心慢慢转向网上购物,也形成了越来越多的网上数据,这意味着CMO可以借此了解业务,并改善消费者的购物体验。然而,今年,我认为,最令营销人员兴奋的应当是人工智能终于有了改善CX(消费者体验)的机会。人工智能不仅授权营销人员随时随地使用消费数据,而且首次对暗数据也有所启用。
维特勒:营销人员如何使用人工智能来改善消费者体验呢?比如说?
佩卢苏:让我来给你举四个不同的例子。
1.人工智能驱动的礼品选择:零售商使用这个工具来帮助消费者挑选恰当的礼物,比如1800-Flowers.com就是这样做的。这个网购商创建了“GWYN”(礼物,当你需要),一个新的人工智能驱动的礼品礼宾,她就像你的“私人助理”,在人机交互中通过一系列问题了解你的偏好。她可以变得更聪明,并预测最适合某人的礼物类型,例如,客户键入“我正在为我的母亲寻找礼物”这样的需求,GWYN就会解读他们的问题,然后提出一系列有关场合,情绪和礼物对象的重要问题,以确保她为每个客户提供合适的,量身定制的礼物建议。重要的是,这不同于联合估计甚至是贝叶斯估计,因为当Watson用自然语言跟人互动时,她会边理解,边推理,边学习,然后将这种洞察力应用于礼物推荐。她从人机交互中提取数据,但同时也从许多其他来源提取信息,比如消费者购买趋势和购买行为数据。
2. 人工智能驱动的商品选择:北面(the North Face)是一个户外品牌,主营服装、设备和鞋。最近该零售商推出了一个由IBM的Watson系统支持的互动在线购物平台,这与North Face品牌使用技术改造零售体验的使命相吻合。现在,Fluid XPS提供的引擎,可以让客户用自然语言在线购物,获得直观的购物推荐。利用Watson的自然语言处理能力,XPS可以根据消费者对一系列问题的回答,来发现和改进产品选择,帮助消费者获得恰当的选择。例如,购物者详细回答了想要的夹克或户外活动的需求细节之后,XPS将询问关于诸如位置,温度或性别等因素的问题,以提供满足购物者使用条件和气候要求的推荐。
3. 人工智能驱动的供应缺货管理:零售商面临的关键性挑战是库存管理。理想情况下,您有恰好可以满足消费者需求的库存。如果你缺货,消费者可能不满意,而去别的店铺。如果你库存过剩,你又会丧失流动资金。那么人工智能如何解决这一问题呢?答案就是Watson正在做的:与零售商合作,监控天气、购买率和消费者行为,以更好地管理和监控供应链,保持适当规模的库存水平,避免缺货。我们使用的工具称为“IBM 智能商业”和“Watson订单优化”。
4. 人工智能驱动的消费者需求分心:人工智能正在改变营销人员如何洞察消费者的需求,以提供更多的相关信息。通过了解个人社交、运动、天气和行为等方面的资料,人工智能可以帮助营销人员更详细地了解消费者想要什么,需要什么。消费者的需求是动态的,不是静态的,所以需要一个洞察机器,来考虑这种动态,并将其纳入您的营销计划。人工智能可以理解、推理、学习,然后把它洞察到的规律加以应用。此外,人工智能可以在其学习过程中引入更多的信息,使得营销在个人层面更加符合私人定制的需要。例如,Watson人工智能包括音调分析器,可以通过增强智能,使系统更好地理解自然语言,并不断学习,以便您能够推理和调整产品。比如,对癌症患者,通过音调分析器,Watson的人工智能可以更好地评估消费者对不同治疗方案的反应,并根据患者个体差异,定制更有针对性的计划。在这一方面,人工智能的潜力是无限的。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20