大数据竞争:始于产品,成于应用
目前的大数据市场,群雄逐鹿,各有所长。对于大数据厂商而言,关注哪些角度,如何打造自身核心竞争力,是其竞争策略的决定性因素。竞争力的来源有多个方面:资本、人才、技术、产品、市场、营销等等;然而在市场竞争中,最终决定权仍然属于用户。从用户角度出发,直接接触的是两个方面:一是产品本身,二是产品在自身业务中的应用。下面,我们来聊聊大数据厂商如何从产品和应用角度来提高其服务能力与市场竞争力。
始于产品,快速的产品迭代是基本竞争力
与to C市场惯于概念炒作不同,成熟的企业服务市场更需要用产品说话,再好的技术和理念,都必须有实际产品作为载体,用户也需要通过产品来获取所需的服务。所以,尽管大数据市场也有很多不同的发展理念,技术纷繁复杂,但好的产品始终是竞争力的基础。
就数据分析产品而言,有多方面功能要素,每个功能又可以进行细分,各个功能点还要相互协调,产品功能的优化与试用体验就成了竞争的关键。这里我们且不讨论纷繁复杂的技术细节,单就产品的迭代速度来看:只有实现快速的产品迭代,才能及时对用户需求进行快速反馈,随着前沿的理念与技术发展更新产品,根据市场需求对原有功能布局进行调整。
以大数据厂商永洪科技为例,每年4~5次的产品迭代速度,基本保证了产品与技术发展和市场需求的快速同步。2016年11月,永洪发布了旗下大数据平台产品Yonghong Z-Suite 7.0版本;2017年4月21日,在济南召开的大数据峰会上,永洪再次更新到了Yonghong Z-Suite 7.1版本,在多个方面做出改进,用永洪科技高级副总裁邵文龙话来说,就是“1234”:
1. 一个全新的交互设计:为用户提供极致易用的操作方式与用户体验;
2. 两处重大性能提升: 移动端性能大幅提升,Android与iOS性能分别提升100%与50%;集市数据导入性能提升数倍,实现节点间数据自动平衡与更高效的数值压缩存储;
3. 三个维度增强可管理性:调度任务增强了在搜索、后续任务、视图交互、多附件等方面的功能,同时在管控和安全方面加强了权限管理粒度细化、数据库支持和防破解等特性;
4. 40多处体验提升:包括大屏显示比例、模块切换、数据源物理表直接使用,以及多种智能布局特性等。
产品迭代速度是研发能力和市场嗅觉的重要体现,为了应对快速变化的大数据市场环境,不断提高的用户需求,大数据厂商应该加强技术和产品研发,保持快速的产品迭代频率,这也是“敏捷BI”在响应速度之外的又一的“敏捷”之处。
成于应用,为客户创造价值才能获得认可
大数据厂商成功的基础是高性能、高可用性、高易用性的产品,但好的产品必须经受住用户的检验,才能完成“惊险的一跃”。一般来说,好的数据分析应用,应该具有如下的特点:
第一,深入理解用户的业务逻辑。每个企业用户的数据,都是对其具体业务的数据化呈现,数据本身是看不出什么关联的,有内在关联的是业务。所以,要让大数据真正有用,就必须对用户的业务有深入理解,才能在数据分析中发现关联,呈现的分析结果才具有实际的参考价值。
第二,有强大的数据分析与数据挖掘能力。应该说大数据应用的核心就在于数据分析,通过对企业业务数据的分析,发现规律,找到经营中存在的问题和风险点,进而为经营决策提供数据支持,改变原来凭借经验直觉进行的粗放式决策,真正实现基于数据的科学决策。
第三,展现形式要简单直观,易于理解。大部分的经营决策者,是不具备也不需要专业的数据分析能力的,因为数据分析最后呈现的应该是一般人都能快速理解的数据形式。敏捷BI如此流行,一个很重要的因素是其让数据分析变得简单直观,没有专业数据分析技术背景的人也能用数据分析工具实现分析。只有让数据分析变得简单,才能降低门槛,让“人人都是数据分析师”的理念变成现实。
仍然以永洪科技为例,其产品在多个专业领域的应用表现可圈可点,已经在海尔集团、济南交警支队等企事业机构有成功应用。以其客户之一的美的集团为例,据介绍,其通过永洪产品打造企业大数据平台,进而构建数据服务,并充分作用于目标客户把控、企业管理运营、市场机遇洞察等多个业务层面,取得了良好的效果。
当下,企业发展逐渐进入精细化发展阶段,对于企业数据的依赖也越来越高。各行各业也在逐步加强对大数据的投入与应用,以提升生产效率和市场洞察,构建新的竞争力。这需要实现对大数据价值的深入挖掘,也对大数据产品和服务提出了更高的要求。不管市场如何改变,能在应用中为用户创造价值的产品,始终不会过时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31