一行R代码来实现繁琐的可视化
ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以ggplot的风格画出好看的图,大大地提高了工作的效率。
ggfortify 已经可以在 CRAN 上下载得到,但是由于最近很多的功能都还在快速增加,因此还是推荐大家从 Github 上下载和安装。
library(devtools) install_github('sinhrks/ggfortify') library(ggfortify)
接下来我将简单介绍一下怎么用ggplot2和ggfortify来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用ggfortify来对时间序列进行快速可视化的方法。
PCA (主成分分析)
ggfortify使ggplot2知道怎么诠释PCA对象。加载好ggfortify包之后, 你可以对stats::prcomp和stats::princomp对象使用ggplot2::autoplot。
library(ggfortify) df <- iris[c(1, 2, 3, 4)] autoplot(prcomp(df))
你还可以选择数据中的一列来给画出的点按类别自动分颜色。输入help(autoplot.prcomp)可以了解到更多的其他选择。
autoplot(prcomp(df), data = iris, colour = 'Species')
比如说给定label = TRUE可以给每个点加上标识(以rownames为标准),也可以调整标识的大小。
autoplot(prcomp(df), data = iris, colour = 'Species', label = TRUE, label.size = 3)
给定shape = FALSE可以让所有的点消失,只留下标识,这样可以让图更清晰,辨识度更大。
autoplot(prcomp(df), data = iris, colour = 'Species', shape = FALSE, label.size = 3)
给定loadings = TRUE可以很快地画出特征向量。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE)
同样的,你也可以显示特征向量的标识以及调整他们的大小,更多选择请参考帮助文件。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE, loadings.colour = 'blue', loadings.label = TRUE, loadings.label.size = 3)
和PCA类似,ggfortify也支持stats::factanal对象。可调的选择也很广泛。以下给出了简单的例子:
注意当你使用factanal来计算分数的话,你必须给定scores的值。
d.factanal <- factanal(state.x77, factors = 3, scores = 'regression') autoplot(d.factanal, data = state.x77, colour = 'Income')
autoplot(d.factanal, label = TRUE, label.size = 3, loadings = TRUE, loadings.label = TRUE, loadings.label.size = 3)
K-均值聚类
autoplot(kmeans(USArrests, 3), data = USArrests)
autoplot(kmeans(USArrests, 3), data = USArrests, label = TRUE, label.size = 3)
其他聚类
ggfortify也支持cluster::clara,cluster::fanny,cluster::pam。
library(cluster) autoplot(clara(iris[-5], 3))
给定frame = TRUE,可以把stats::kmeans和cluster::*中的每个类圈出来。
autoplot(fanny(iris[-5], 3), frame = TRUE)
你也可以通过frame.type来选择圈的类型。更多选择请参照ggplot2::stat_ellipse里面的frame.type的type关键词。
autoplot(pam(iris[-5], 3), frame = TRUE, frame.type = 'norm')
更多关于聚类方面的可视化请参考 Github 上的 Vignette 或者 Rpubs 上的例子。
lfda(Fisher局部判别分析)
lfda包支持一系列的 Fisher 局部判别分析方法,包括半监督 lfda,非线性 lfda。你也可以使用ggfortify来对他们的结果进行可视化。
library(lfda) # Fisher局部判别分析 (LFDA) model <- lfda(iris[-5], iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
# 非线性核Fisher局部判别分析 (KLFDA) model <- klfda(kmatrixGauss(iris[-5]), iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
注意对iris数据来说,不同的类之间的关系很显然不是简单的线性,这种情况下非线性的klfda 影响可能太强大而影响了可视化的效果,在使用前请充分理解每个算法的意义以及效果。
# 半监督Fisher局部判别分析 (SELF) model <- self(iris[-5], iris[, 5], beta = 0.1, r = 3, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
时间序列的可视化
用ggfortify可以使时间序列的可视化变得极其简单。接下来我将给出一些简单的例子。
ts对象
library(ggfortify) autoplot(AirPassengers)
可以使用ts.colour和ts.linetype来改变线的颜色和形状。更多的选择请参考help(autoplot.ts)。
autoplot(AirPassengers, ts.colour = 'red', ts.linetype = 'dashed')
多变量时间序列
library(vars) data(Canada) autoplot(Canada)
使用facets = FALSE可以把所有变量画在一条轴上。
autoplot(Canada, facets = FALSE)
autoplot也可以理解其他的时间序列类别。可支持的R包有:
zoo::zooreg
xts::xts
tseries::irts
一些例子:
library(xts) autoplot(as.xts(AirPassengers), ts.colour = 'green')
library(timeSeries) autoplot(as.timeSeries(AirPassengers), ts.colour = ('dodgerblue3'))
你也可以通过ts.geom来改变几何形状,目前支持的有line,bar和point。
autoplot(AirPassengers, ts.geom = 'bar', fill = 'blue')
autoplot(AirPassengers, ts.geom = 'point', shape = 3)
forecast包
library(forecast) d.arima <- auto.arima(AirPassengers) d.forecast <- forecast(d.arima, level = c(95), h = 50) autoplot(d.forecast)
有很多设置可供调整:
autoplot(d.forecast, ts.colour = 'firebrick1', predict.colour = 'red', predict.linetype = 'dashed', conf.int = FALSE)
vars包
library(vars) data(Canada) d.vselect <- VARselect(Canada, lag.max = 5, type = 'const')$selection[1] d.var <- VAR(Canada, p = d.vselect, type = 'const') autoplot(predict(d.var, n.ahead = 50), ts.colour = 'dodgerblue4', predict.colour = 'blue', predict.linetype = 'dashed')
changepoint包
library(changepoint) autoplot(cpt.meanvar(AirPassengers))
autoplot(cpt.meanvar(AirPassengers), cpt.colour = 'blue', cpt.linetype = 'solid')
strucchange包
library(strucchange) autoplot(breakpoints(Nile ~ 1), ts.colour = 'blue', ts.linetype = 'dashed', cpt.colour = 'dodgerblue3', cpt.linetype = 'solid')
dlm包
library(dlm) form <- function(theta){ dlmModPoly(order = 1, dV = exp(theta[1]), dW = exp(theta[2])) } model <- form(dlmMLE(Nile, parm = c(1, 1), form)$par) filtered <- dlmFilter(Nile, model) autoplot(filtered)
autoplot(filtered, ts.linetype = 'dashed', fitted.colour = 'blue')
smoothed <- dlmSmooth(filtered) autoplot(smoothed)
p <- autoplot(filtered) autoplot(smoothed, ts.colour = 'blue', p = p)
KFAS包
library(KFAS) model <- SSModel( Nile ~ SSMtrend(degree=1, Q=matrix(NA)), H=matrix(NA) ) fit <- fitSSM(model=model, inits=c(log(var(Nile)),log(var(Nile))), method="BFGS") smoothed <- KFS(fit$model) autoplot(smoothed)
使用smoothing='none'可以画出过滤后的结果。
filtered <- KFS(fit$model, filtering="mean", smoothing='none') autoplot(filtered)
trend <- signal(smoothed, states="trend") p <- autoplot(filtered) autoplot(trend, ts.colour = 'blue', p = p)
stats包
可支持的stats包里的对象有:
stl,decomposed.ts
acf,pacf,ccf
spec.ar,spec.pgram
cpgramautoplot(stl(AirPassengers, s.window = 'periodic'), ts.colour = 'blue')
autoplot(acf(AirPassengers, plot = FALSE))
autoplot(acf(AirPassengers, plot = FALSE), conf.int.fill = '#0000FF', conf.int.value = 0.8, conf.int.type = 'ma')
autoplot(spec.ar(AirPassengers, plot = FALSE))
ggcpgram(arima.sim(list(ar = c(0.7, -0.5)), n = 50))
library(forecast) ggtsdiag(auto.arima(AirPassengers))
gglagplot(AirPassengers, lags = 4)
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20